Point of Care Intravenous Anaesthetic Measurement in Anaesthesia and Critical Care By

Total Page:16

File Type:pdf, Size:1020Kb

Point of Care Intravenous Anaesthetic Measurement in Anaesthesia and Critical Care By Point of Care Intravenous Anaesthetic Measurement in Anaesthesia and Critical Care by Dr Nicholas John Cowley A Thesis Submitted to The University of Birmingham for the Degree of DOCTOR OF MEDICINE (MD) School of Clinical and Experimental Medicine College of Medicine and Dentistry University of Birmingham Date of Submission: May 2014 i University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Contents Abstract ................................................................................................................. iii List of Chapters ...................................................................................................... v List of Figures ........................................................................................................ xii List of Tables ......................................................................................................... xvii Declaration ............................................................................................................ xx acknowledgements ................................................................................................. xxiii List of Abbreviations ............................................................................................... xxiv ii Abstract Maintenance of anaesthesia using the intravenous agent propofol has markedly increased following the development of pharmacokinetic models for drug delivery. These models estimate drug concentrations based on a small cohort of patients used to develop the model. It is proposed that an analyser capable of determining propofol concentrations at the point of care may lead to an improved accuracy of drug delivery. Validation work on an analyser with the novel capability of measuring blood propofol concentrations in near real time, developed in collaboration with our department, has been analysed. Results demonstrate a high level of precision for samples in the clinical range between 0.25 and 10µg.ml-1 (bias 0.13 µg.ml-1, precision -0.1 to 0.4 µg.ml-1). A review of the literature and supplementary experimentation were performed in order to determine whether variation in methods of blood sample preparation for analysis were significant. Wide variations in reported methods of blood preparation were found, which have implications for the validity of published data. Further work in the clinical setting was carried out using the novel propofol analyser to further research its potential use in patients with organ dysfunction, as well as to further explore propofol pharmacokinetics in a diverse patient cohort. Studies were performed in intensive care correlating blood propofol concentrations with depth of sedation, and demonstrating a correlation with level of organ failure. The Marsh model of Target Controlled Anaesthesia was poorer at predicting propofol concentration in patients with significant organ dysfunction than in those without organ failure (correlation coefficient 0.36 vs. 0.73 respectively). Studies in the operating room were performed in which measured propofol concentrations were compared with those predicted using the Marsh model. Results demonstrated significant inaccuracies of the model (bias 32%, precision - 8.7 to 72.6%). Anaesthetists relied on estimated concentrations of anaesthetic, with 46% iii making no changes to the set concentration. A method of Marsh model bias correction using a single blood propofol measurement was tested. Results demonstrated insufficient predictability to allow a single point calibration. Use of a model with better performance during early anaesthesia, or multiple sampling may yield more promising results. iv List of Chapters 1 Chapter 1 - Introduction ................................................................................... 1 1.1 General Anaesthesia ........................................................................................................ 1 1.2 Inhalational Anaesthesia .................................................................................................. 2 1.3 Determining Amount of Anaesthetic Delivered During Maintenance Anaesthesia .................. 4 1.4 Intravenous Anaesthesia .................................................................................................. 7 1.5 Propofol ........................................................................................................................ 12 1.5.1 Chemistry ...........................................................................................................................13 1.5.2 Mechanism of Action ............................................................................................................14 1.5.3 Metabolism .........................................................................................................................15 1.5.4 Pharmacokinetics .................................................................................................................16 1.5.5 Pharmacodynamics ..............................................................................................................19 1.5.5.1 Central nervous system................................................................................................................... 19 1.5.5.2 Respiratory System ......................................................................................................................... 20 1.5.5.3 Cardiovascular System .................................................................................................................... 21 1.5.6 Side Effects .........................................................................................................................21 1.5.7 Contraindications .................................................................................................................23 1.6 The Administration of Propofol Intravenous Anaesthesia .................................................. 24 1.6.1 Manually Controlled Infusion Systems ....................................................................................25 1.6.2 Target-Controlled Infusion (TCI) ...........................................................................................27 1.6.3 Differences between pharmacokinetic models for propofol .......................................................31 1.6.3.1 Propofol TCI in paediatrics .............................................................................................................. 35 1.6.3.2 Propofol TCI in the obese population ............................................................................................... 36 1.6.4 The Evaluation of Target Controlled Infusion Systems .............................................................38 1.6.5 Effect-Site Estimation ...........................................................................................................39 v 1.6.6 Advantages and Disadvantages of Target Controlled Infusion ..................................................40 1.7 Methods of Measuring Blood Propofol Currently Available ................................................. 42 1.7.1 High Performance Liquid Chromatography (HPLC) ..................................................................42 1.7.2 Gas Chromatography (GC) ....................................................................................................44 1.7.3 Mass Spectrometry ..............................................................................................................44 1.8 Surrogate Methods of Estimating Blood Propofol Concentration ........................................ 45 1.9 Methods to determine depth of anaesthesia during Total Intravenous Anaesthesia with Propofol ................................................................................................................................ 46 1.9.1 Introduction ........................................................................................................................46 1.9.2 Depth of Anaesthesia Monitors ..............................................................................................48 1.9.2.1 Bispectral Index Monitor (BIS) ......................................................................................................... 48 1.9.2.2 Entropy .......................................................................................................................................... 49 1.9.2.3 Narcotrend ..................................................................................................................................... 50 1.9.2.4 Patient State Analyser (PSI) ............................................................................................................ 50 1.9.2.5 Auditory Evoked Potential Monitor (AEP) .......................................................................................... 51 1.9.3 Weaknesses of Depth of Anaesthesia Monitoring ....................................................................51 2 Chapter 2 – Clinical validation
Recommended publications
  • Determination of Barbiturates and 11-Nor-9-Carboxy-Δ9-THC in Urine
    Determination of Barbiturates and 11-Nor-9-carboxy- 9-THC in Urine using Automated Disposable Pipette Extraction (DPX) and LC/MS/MS Fred D. Foster, Oscar G. Cabrices, John R. Stuff, Edward A. Pfannkoch GERSTEL, Inc., 701 Digital Dr. Suite J, Linthicum, MD 21090, USA William E. Brewer Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St. Columbia, SC 29208, USA KEYWORDS DPX, LC/MS/MS, Sample Preparation, High Throughput Lab Automation ABSTRACT This work demonstrates the use of disposable pipette extraction (DPX) as a fast and automated sample preparation technique for the determination of barbiturates and 11-nor-9- carboxy- 9-THC (COOH-THC) in urine. Using a GERSTEL MultiPurpose Sampler (MPS) with DPX option coupled to an Agilent 6460 LC-MS/MS instrument, 8 barbiturates and COOH-THC were extracted and their concentrations determined. The resulting average cycle time of 7 min/ sample, including just-in-time sample preparation, enabled high throughput screening. Validation results show that the automated DPX-LC/ AppNote 1/2013 MS/MS screening method provides adequate sensitivity for all analytes and corresponding internal standards that were monitored. Lower limits of quantitation (LLOQ) were found to be 100 ng/mL for the barbiturates and 10 ng/mL for COOH-THC and % CVs were below 10 % in most cases. INTRODUCTION The continuously growing quantity of pain management sample extract for injection [1-2]. The extraction of the drugs used has increased the demand from toxicology Barbiturates and COOH-THC is based on the DPX-RP- laboratories for more reliable solutions to monitor S extraction method described in an earlier Application compliance in connection with substance abuse and/or Note detailing monitoring of 49 Pain Management diversion.
    [Show full text]
  • Intravenous Anesthetics  a Drug That Induces Reversible Anesthesia  the State of Loss of Sensations, Or Awareness
    DR.MED. ABDELKARIM ALOWEIDI AL-ABBADI ASSOCIATE PROF. FACULTY OF MEDICINE THE UNIVERSITY OF JORDAN Goals of General Anesthesia Hypnosis (unconsciousness) Amnesia Analgesia Immobility/decreased muscle tone (relaxation of skeletal muscle) Reduction of certain autonomic reflexes (gag reflex, tachycardia, vasoconstriction) Intravenous Anesthetics A drug that induces reversible anesthesia The state of loss of sensations, or awareness. Either stimulates an inhibitory neuron, or inhibits an excitatory neuron. Organs are divided according to blood perfusion: High- perfusion organs (vessel-rich); brain takes up disproportionately large amount of drug compared to less perfused areas (muscles, fat, and vessel-poor groups). After IV injection, vessel-rich group takes most of the available drug Drugs bound to plasma proteins are unavailable for uptake by an organ After highly perfused organs are saturated during initial distribution, the greater mass of the less perfused organs continue to take up drug from the bloodstream. As plasma concentration falls, some drug leaves the highly perfused organs to maintain equilibrium. This redistribution from the vessel-rich group is responsible for termination of effect of many anesthetic drugs. Compartment Model Inhibitory channels : GABA-A channels ( the main inhibitory receptor). Glycine channels. Excitatory channels : Neuronal nicotic. NMDA. Rapid onset (mainly unionized at physiological pH) High lipid solubility Rapid recovery, no accumulation during prolonged infusion Analgesic
    [Show full text]
  • Pharmacokinetics and Pharmacology of Drugs Used in Children
    Drug and Fluid Th erapy SECTION II Pharmacokinetics and Pharmacology of Drugs Used CHAPTER 6 in Children Charles J. Coté, Jerrold Lerman, Robert M. Ward, Ralph A. Lugo, and Nishan Goudsouzian Drug Distribution Propofol Protein Binding Ketamine Body Composition Etomidate Metabolism and Excretion Muscle Relaxants Hepatic Blood Flow Succinylcholine Renal Excretion Intermediate-Acting Nondepolarizing Relaxants Pharmacokinetic Principles and Calculations Atracurium First-Order Kinetics Cisatracurium Half-Life Vecuronium First-Order Single-Compartment Kinetics Rocuronium First-Order Multiple-Compartment Kinetics Clinical Implications When Using Short- and Zero-Order Kinetics Intermediate-Acting Relaxants Apparent Volume of Distribution Long-Acting Nondepolarizing Relaxants Repetitive Dosing and Drug Accumulation Pancuronium Steady State Antagonism of Muscle Relaxants Loading Dose General Principles Central Nervous System Effects Suggamadex The Drug Approval Process, the Package Insert, and Relaxants in Special Situations Drug Labeling Opioids Inhalation Anesthetic Agents Morphine Physicochemical Properties Meperidine Pharmacokinetics of Inhaled Anesthetics Hydromorphone Pharmacodynamics of Inhaled Anesthetics Oxycodone Clinical Effects Methadone Nitrous Oxide Fentanyl Environmental Impact Alfentanil Oxygen Sufentanil Intravenous Anesthetic Agents Remifentanil Barbiturates Butorphanol and Nalbuphine 89 A Practice of Anesthesia for Infants and Children Codeine Antiemetics Tramadol Metoclopramide Nonsteroidal Anti-infl ammatory Agents 5-Hydroxytryptamine
    [Show full text]
  • Accidental Awareness During General Anaesthesia (AAGA) in Obstetrics
    O B S T E T R I C A N A E S T H E S I A Tutorial 388 Accidental Awareness during General Anaesthesia (AAGA) in Obstetrics Dr. Rezaur Rahman Specialty Registrar in Anaesthetics, Queen Alexandra Hospital, Portsmouth, United Kingdom Dr. Samantha Wilson Consultant Anaesthetist, Basingstoke and North Hampshire Hospital, Basingstoke, United Kingdom Edited by Dr James Brown,i Dr Gill Abirii i Consultant Anesthesiologist, BC Women’s Hospital, Canada ii Clinical Associate Professor, Stanford University School of Medicine, USA nd Correspondence to [email protected] 2 Oct 2018 An online test is available for self-directed Continuous Medical Education (CME). A certificate will be awarded upon passing the test. Please refer to the accreditation policy here. Take online quiz KEY POINTS Accidental awareness during general anaesthesia is more common in obstetric practice than in any other discipline of anaesthesia Factors contributing to an increased risk of accidental awareness during general anaesthesia include maternal stress or anxiety, emergency surgery and the “intravenous-inhalational” interval Accidental awareness during general anaesthesia can be associated with considerable physiological and psychological harm Strategies to minimise the risk of accidental awareness during general anaesthesia include an appropriate dose of anaesthetic induction agent, and use of nitrous oxide to achieve an adequate depth of anaesthesia INTRODUCTION Accidental awareness during general anaesthesia (AAGA) is defined as the unintended experience and subsequent recall of intra-operative events. In recent decades, the incidence of AAGA has been reported as between 1–2:1,000 general anaesthetics (1). The landmark NAP5 report (Fifth National Audit Project) - a national survey conducted by The Royal College of Anaesthetists (RCOA) which investigated spontaneous reports of AAGA - demonstrated an incidence of 1:19,000 in the general population.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Protecting Mental Health in the Age of Anxiety: the Context of Valium's Development, Synthesis, and Discovery in the United States, to 1963 Catherine (Cai) E
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 Protecting mental health in the Age of Anxiety: The context of Valium's development, synthesis, and discovery in the United States, to 1963 Catherine (cai) E. Guise-richardson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the History Commons Recommended Citation Guise-richardson, Catherine (cai) E., "Protecting mental health in the Age of Anxiety: The onc text of Valium's development, synthesis, and discovery in the United States, to 1963" (2009). Graduate Theses and Dissertations. 10574. https://lib.dr.iastate.edu/etd/10574 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Protecting mental health in the Age of Anxiety: The context of Valium’s development, synthesis, and discovery in the United States, to 1963 by Catherine (Cai) Guise-Richardson A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: History of Technology and Science Program of Study Committee: Hamilton Cravens, Co-Major Professor Alan I Marcus, Co-Major Professor Amy Sue Bix Charles Dobbs David Wilson Iowa State University Ames, Iowa 2009 Copyright © Catherine (Cai) Guise-Richardson, 2009. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES iv ABSTRACT v CHAPTER 1.
    [Show full text]
  • A Fast Analytical LC/MS/MS Method for the Simultaneous Analysis of Barbiturates and 11-Nor-9-Carboxy-Δ9- Tetrahydrocannabinol (THC-A) in Urine
    Application Note Clinical Research A Fast Analytical LC/MS/MS Method for the Simultaneous Analysis of Barbiturates and 11-nor-9-carboxy-Δ9- tetrahydrocannabinol (THC-A) in Urine Using ESI negative ionization mode and alternating column regeneration Authors Abstract Andre Szczesniewski and Most of the compounds in large drug panels are analyzed using positive ionization Carrie J. Adler mode. However, barbiturates and 11-nor-9-carboxy-Δ9-THC (THC-A) perform better Agilent Technologies, Inc. using electrospray ionization (ESI) in negative mode with the mobile phase pH favorable for negative ionization. This work developed a fast analytical method combining eight barbiturates and THC-A in a single analysis using alternating column regeneration (ACR) to increase sample throughput. Moving the analytes preferring negative ionization into a separate test increases the analytical sensitivity of the compounds, allowing for greater research capabilities. The simple sample preparation techniques used provided rapid analysis, good analytical sensitivity, and quantitation over a wide dynamic range. This analysis used an Agilent 6470 triple quadrupole mass spectrometer with Agilent Jet Stream technology in ESI negative ionization mode and an Agilent Infinity II 1290 UHPLC system. A second pump and 2-position 10-port switching valve were added to facilitate use of the ACR. A 100 µL aliquot of human urine was used for the analysis of barbiturates and THC-A. Chromatographic separation of the analytes was achieved in less than 3 minutes using a gradient method composed of a H2O:acetonitrile mixture with 5 mM ammonium acetate and two Agilent Poroshell 120 EC-C18, 2.1 × 100 mm, 1.9 μm columns.
    [Show full text]
  • Inhalational Anesthetics
    UPTAKE AND DISTRIBUTION OF INHALATIONAL ANESTHETICS Dr.J.Edward Johnson.M.D.(Anaes),D.C.H. Asst.Professor, Kanyakumari Govt. Medical College Hospital. INTRODUCTION The modern anesthetist expeditiously develops and then sustains anesthetic concentrations in the central nervous system that are sufficient for surgery with agents and techniques that usually permit rapid recovery from anesthesia. Understanding the factors that govern the relationship between the delivered anesthetic and brain concentrations enhances the optimum conduct of anesthesia. I. UPTAKE OF INHALED ANESTHETICS. A. Factors raising the alveolar concentration, assuming a constant inspired anesthetic concentration, and no uptake by blood: 1. The inspired concentration (FI). a. The rate of rise is directly proportional to the inspired concentration. 2. The alveolar ventilation (Valveolar) a. The larger the minute alveolar ventilation (Valveolar), the more rapid the rise in alveolar concentration (FA) . b. Inspired gas is diluted by the FRC, so the larger the FRC, as a fraction of Valveolar, the slower the alveolar rise in anesthetic concentration. c. For ventilatory rates over 4 breaths, the ventilatory rate does not make any difference at the same Valveolar. 3. The time constant The time required for flow through a container to equal the capacity of the container. Time constant = volume (capacity)/flow Time Constant % washin/washout 1 63% 2 86% 3 95% 4 98% For example; If 10 liter box is initially filled with oxygen and 5 l/min of nitrogen flow into box then, the TC is volume (capacity)/flow. TC = 10 / 5 = 2 minutes. So, the nitrogen concentration at end of 2 minutes is 63%.
    [Show full text]
  • Pharmacological Review of Chemicals Used for the Capture of Animals
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the 7th Vertebrate Pest Vertebrate Pest Conference Proceedings Conference (1976) collection March 1976 PHARMACOLOGICAL REVIEW OF CHEMICALS USED FOR THE CAPTURE OF ANIMALS Peter J. Savarie U.S. Fish and Wildlife Service Follow this and additional works at: https://digitalcommons.unl.edu/vpc7 Part of the Environmental Health and Protection Commons Savarie, Peter J., "PHARMACOLOGICAL REVIEW OF CHEMICALS USED FOR THE CAPTURE OF ANIMALS" (1976). Proceedings of the 7th Vertebrate Pest Conference (1976). 41. https://digitalcommons.unl.edu/vpc7/41 This Article is brought to you for free and open access by the Vertebrate Pest Conference Proceedings collection at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the 7th Vertebrate Pest Conference (1976) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PHARMACOLOGICAL REVIEW OF CHEMICALS USED FOR THE CAPTURE OF ANIMALS* PETEIR J. SAVARIE, U.S. Fish and Wildlife Service, Building 16, Federal Center, Denver, Colorado 80225 ABSTRACT: A review of the literature reveals that over 60 chemicals have been used for the capture of wi l d animals, but only 30 of the most widely used chemicals are discussed in the present paper. For practical considerations these chemicals can be c l a ssified as being either (l) neuromuscular blocking agents, or (2) central nervous system (CNS) depressants. Some common neuromuscular blocking agents are d-tubocurarine, gallamine, succiny1choline, and nicotine. M99 and its derivatives, phencyclidine, and xylazine are some of the more commonly used CNS depressants. Neuromuscular blocking agents have a relatively rapid onset and short duration of action but they do not possess sedative, analgesic, or anesthetic properties.
    [Show full text]
  • Capítulo 30 Anestesia Intravenosa
    Capítulo 30 Anestesia intravenosa JAAP VUYK • ELSKE SITSEN • MARIJE REEKERS Agradecimientos. Los redactores y el editor desean agradecer a los Dres. J. G. Reves, Peter Glass, David A. Lubarsky, Matthew D. McEvoy y Ricardo Martinez-Ruiz la aportación de un capítulo sobre el mismo tema en la edición previa de este tratado, que ha servido de base para el presente capítulo. P UNTOS CLAVE • La introducción de tiopental en la práctica clínica en 1934 supuso el comienzo de la era de la anestesia intravenosa (i.v.) moderna. Hoy en día, los anestésicos i.v. forman parte de la inducción y el mantenimiento de la anestesia y la sedación en un amplio abanico de situaciones. • El anestésico i.v. más utilizado es el propofol, un alquilfenol formulado en emulsión lipídica. Se trata de un fármaco que ofrece rapidez de inicio y finalización de acción, así como tiempos decrecientes concordantes con el contexto de unos 10 min en infusiones de duración menor de 3 h e inferior a 40 min en aquellas de hasta 8 h. Su mecanismo de acción podría corresponder a la potenciación de las corrientes de cloro inducidas por el ácido g-aminobutírico (GABA). El propofol induce una disminución dependiente de la dosis de la presión arterial media por sendas reducciones del gasto cardíaco y la resistencia vascular periférica, y ocasiona una depresión respiratoria moderada. El efecto antiemético constituye un rasgo exclusivo de este compuesto incluso a concentraciones menores de las que producen sedación. • Los barbitúricos constituían los fármacos i.v. más utilizados en la inducción de la anestesia con anterioridad a la introducción del propofol.
    [Show full text]
  • Midazolam Injection, USP
    Midazolam Injection, USP Rx only PHARMACY BULK PACKAGE – NOT FOR DIRECT INFUSION WARNING ADULTS AND PEDIATRICS: Intravenous midazolam has been associated with respiratory depression and respiratory arrest, especially when used for sedation in noncritical care settings. In some cases, where this was not recognized promptly and treated effectively, death or hypoxic encephalopathy has resulted. Intravenous midazolam should be used only in hospital or ambulatory care settings, including physicians’ and dental offices, that provide for continuous monitoring of respiratory and cardiac function, i.e., pulse oximetry. Immediate availability of resuscitative drugs and age- and size-appropriate equipment for bag/valve/mask ventilation and intubation, and personnel trained in their use and skilled in airway management should be assured (see WARNINGS). For deeply sedated pediatric patients, a dedicated individual, other than the practitioner performing the procedure, should monitor the patient throughout the procedures. The initial intravenous dose for sedation in adult patients may be as little as 1 mg, but should not exceed 2.5 mg in a normal healthy adult. Lower doses are necessary for older (over 60 years) or debilitated patients and in patients receiving concomitant narcotics or other central nervous system (CNS) depressants. The initial dose and all subsequent doses should always be titrated slowly; administer over at least 2 minutes and 1 allow an additional 2 or more minutes to fully evaluate the sedative effect. The dilution of the 5 mg/mL formulation is recommended to facilitate slower injection. Doses of sedative medications in pediatric patients must be calculated on a mg/kg basis, and initial doses and all subsequent doses should always be titrated slowly.
    [Show full text]
  • 6. TOXICOKINETICS and METABOLISM 6.1 Introduction
    6. TOXICOKINETICS AND METABOLISM 6.1 Introduction The binding of carbon monoxide to haemoglobin, producing car- boxyhaemoglobin, decreases the oxygen carrying capacity of blood and interferes with oxygen release at the tissue level; these two main mechanisms of action underlie the potentially toxic effects of low- level carbon monoxide exposure. Impaired delivery of oxygen can interfere with cellular respiration and result in tissue hypoxia. Hypoxia of sensitive tissues, in turn, can affect the function of many organs, including the lungs. The effects would be expected to be more pronounced under conditions of stress, as with exercise, for example. Although the principal cause of carbon monoxide-induced toxicity at low exposure levels is thought to be increased carboxyhaemoglobin formation, the physiological response to carbon monoxide at the cellu- lar level and its related biochemical effects are still not fully under- stood. Other mechanisms of carbon monoxide-induced toxicity have been hypothesized and assessed, such as hydroxyl radical production (Piantadosi et al., 1997) and lipid peroxidation (Thom, 1990, 1992, 1993) in the brain of carbon monoxide-poisoned rats, but none has been demonstrated to operate at relatively low (near-ambient) carbon monoxide exposure levels. 6.2 Endogenous carbon monoxide production In addition to exogenous sources, humans are also exposed to small amounts of carbon monoxide produced endogenously. In the process of natural degradation of haemoglobin to bile pigments, in concert with the microsomal reduced nicotinamide adenine dinucleo- tide phosphate (NADPH) cytochrome P-450 reductase, two haem oxygenase isoenzymes, HO-1 and HO-2, catalyse the oxidative break- down of the "-methene bridge of the tetrapyrrol ring of haem, leading to the formation of biliverdin and carbon monoxide.
    [Show full text]