Next-Generation DNA Sequencing Techniques Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wo 2007/086935 A2
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 2 August 2007 (02.08.2007) WO 2007/086935 A2 (51) International Patent Classification: Not classified (US). MYERS, Eugene, W. [-/US]; 20 Commercial Street, Branford, CT 06405 (US). SIMPSON, John, (21) International Application Number: W. [US/US]; 23 Woodland Road, Suite B4, Madison, PCT/US2006/030235 CT 06443 (US). VOLKMER, Greg, A. [-/US]; 20 Commercial Street, Branford, CT 06405 (US). (22) International Filing Date: 1 August 2006 (01.08.2006) (74) Agent: HOPKINS, Brian, P.; Mintz, Levin, Cohn, Ferris, (25) Filing Language: English Glovsky And Popeo, Rc, Chrysler Center, 666 Third Av enue, New York, NY 10017 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 11/195,254 1 August 2005 (01.08.2005) US AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, (71) Applicant (for all designated States except US): 454 LIFE GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, SCIENCES CORPORATION [US/US]; 20 Commercial KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, Street, Branford, CT 06405 (US). LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, (72) Inventors; and SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, (75) Inventors/Applicants (for US only): MCDADE, Keith, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW E. -
(12) United States Patent (10) Patent No.: US 8,557,518 B2 Jovanovich Et Al
US008557518B2 (12) United States Patent (10) Patent No.: US 8,557,518 B2 Jovanovich et al. (45) Date of Patent: Oct. 15, 2013 (54) MCROFLUDIC AND NANOFLUIDC (56) References Cited DEVICES, SYSTEMS, AND APPLICATIONS U.S. PATENT DOCUMENTS (75) Inventors: Stevan Bogdan Jovanovich, Livermore, 3,190,310 A 6/1965 Honsinger CA (US); Iuliu I. Blaga, Fremont, CA 11/1967 Ando et al. (US); Michael Nguyen, San Jose, CA 3,352,643 A (US); William D. Nielsen, San Jose, CA (Continued) (US); Mattias Vangbo, Fremont, CA (US) FOREIGN PATENT DOCUMENTS CA 2433145 A1 5, 2002 (73) Assignee: IntegenX Inc., Pleasanton, CA (US) EP O459.241 B1 12, 1991 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 109 days. Shaikh et all “A modular microfluidic archetecture for integrated (21) Appl. No.: 12/845,650 biochemical analysis”, PNAS, 2005, 102: 9745-9750.* (22) Filed: Jul. 28, 2010 (Continued) (65) Prior Publication Data Primary Examiner — Betty Forman US 2012/O1151.89 A1 May 10, 2012 (57) ABSTRACT Related U.S. Application Data The present invention discloses the integration of program (63) Continuation of application No. 12/526,015, filed as mable microfluidic circuits to achieve practical applications application No. PCT/US2008/053099 on Feb. 5, 2008. to process biochemical and chemical reactions and to inte grate these reactions. In some embodiments workflows for (60) Provisional application No. 60/899,630, filed on Feb. biochemical reactions or chemical workflows are combined. 5, 2007. Microvalves such as programmable microfluidic circuit with Y valves and flow through valves are disclosed. -
Genetic Sequence Analysis by Microarray Technology EMILIE HULTIN
Genetic Sequence Analysis by Microarray Technology EMILIE HULTIN Royal Institute of Technology School of Biotechnology Stockholm 2007 © Emilie Hultin Royal Institute of Technology AlbaNova University Center School of Biotechnology SE-106 91 Stockholm Sweden Printed at Universitetsservice US-AB Box 700 14 SE-100 44 Stockholm Sweden ISBN 978-91-7178-609-8 Emilie Hultin (2007): Genetic Sequence Analysis by Microarray Technology School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden ISBN 978-91-7178-609-8 Abstract Developments within the field of genetic analysis have during the last decade become enormous. Advances in DNA sequencing technology have increased throughput from a thousand bases to over a billion bases in a day and decreased the cost thousandfold per base. Nevertheless, to sequence complex genomes like the human is still very expensive and efforts to attain even higher throughputs for less money are undertaken by researchers and companies. Genotyping systems for single nucleotide polymorphism (SNP) analysis with whole genome coverage have also been developed, with low cost per SNP. There is, however, a need for genotyping assays that are more cost efficient per sample with considerably higher accuracy. This thesis is focusing on a technology, based on competitive allele- specific extension and microarray detection, for genetic analysis. To increase specificity in allele-specific extension (ASE), a nucleotide degrading enzyme, apyrase, was introduced to compete with the polymerase, only allowing the fast, perfect matched primer extension to occur. The aim was to develop a method for analysis of around twenty loci in hundreds of samples in a high-throughput microarray format. -
Resolution of DNA Mixtures and Analysis of Degraded DNA Using the 454 DNA Sequencing Technology
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Resolution of DNA Mixtures and Analysis of Degraded DNA Using the 454 DNA Sequencing Technology Author(s): Cassandra D. Calloway, Ph.D., Hanna Kim, Henry Erlich Document No.: 249100 Date Received: August 2015 Award Number: 2010-DN-BX-K141 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this federally funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Resolution of DNA Mixtures and Analysis of Degraded DNA Using the 454 DNA Sequencing Technology Grant #:2010-DN-BX-K141 Principal Investigator Cassandra D. Calloway, PhD Authors Cassandra D. Calloway, PhD, Hanna Kim, and Henry Erlich This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. I. Abstract The massively parallel and clonal nature of next generation sequencing (NGS) technologies has the potential to revolutionize the forensics DNA field. NGS is capable of analyzing sequence polymorphisms (e.g. mtDNA, SNPs) as well as length polymorphisms (e.g. STRs) on the same platform. Moreover, sequencing STR markers will detect any sequence polymorphisms in the STR loci, thus increasing the discrimination potential of these widely used markers. -
Bio 215 Course Title: General Biochemistry Laboratory I
NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 215 COURSE TITLE: GENERAL BIOCHEMISTRY LABORATORY I 1 BIO 215: GENERAL BIOCHEMISTRY LABORATORY I Course Developer: DR (MRS.) AKIN-OSANAIYE BUKOLA CATHERINE UNIVERISTY OF ABUJA Course Editor: Dr Ahmadu Anthony Programme Leader: Professor A. Adebanjo Course Coordinator: Adams Abiodun E. 2 UNIT 1 INTRODUCTION TO LABORATORY AND LABORATORY EQUIPMENT CONTENTS 1.0 Introduction 2.0 Objectives 3.0 Main Body 3.1 What is a Laboratory? 3.2 Laboratory Equipment 4.0 Conclusion 5.0 Summary 6.0 Tutor-marked Assignments 7.0 References/Further Readings 1.0 INTRODUCTION Scientific research and investigations will be of little value without good field and laboratory work. These investigations are normally carried out through the active use of processes which involves laboratory or other hands-on activities. Many devices and products used in everyday life resulted from laboratory works. They include car engines, plastics, radios, televisions, synthetic fabrics, etc. 3 2.0 OBJECTIVES Upon completion of studying this unit, you should be able to: 1. Define the meaning of laboratory 2. List different types of laboratories 3. Identify different types of laboratory equipment 3.0 MAIN BODY 3.1 What is a Laboratory? A laboratory informally, lab is a facility that provides controlled conditions in which scientific research, experiments, and measurement may be performed. It is a place equipped for investigative procedures and for the preparation of reagents, therapeutic chemical materials, and so on. The title of laboratory is also used for certain other facilities where the processes or equipment used are similar to those in scientific laboratories. -
Next Generation Sequencing and Its Application in Livestock
Journal of Entomology and Zoology Studies 2018; 6(3): 1601-1609 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Next generation sequencing and its application in JEZS 2018; 6(3): 1601-1609 © 2018 JEZS livestock Received: 18-03-2018 Accepted: 23-04-2018 Vandana Yadav Vandana Yadav, BL Saini, Narendra Pratap Singh, Neeti Lakhani and Ph.D. Scholar, Animal Genetics, Rahul Sharma ICAR-NDRI, ICAR-National Dairy Research Institute, Karnal, Haryana, India Abstract The ability to determine nucleic acid sequences is one of the most important platforms for the detailed BL Saini study of biological systems. Next generation sequencing (NGS) technology has revolutionized genomic Ph.D Scholar, Animal Genetics, and genetic research. Starting from the basic Sanger sequencing, the next generation sequencing are ICAR-IVRI, ICAR-National providing high throughput and much cheaper alternative. All NGS have a similar base methodology that Dairy Research Institute, includes template preparation, sequencing and imaging, and data analysis. Different NGS platform use Karnal, Haryana, India different technology for the identification of the called base. Different commercially available technologies include 454 FLX Roche (pyrosequecing), Illumina Solexa (CRT), ABI SOLiD (sequencing Narendra Pratap Singh M.V.Sc Scholar, Animal genetics, by ligation) and Ion semiconductor sequencing (Ion Torrent) which require the pre-amplification process ICAR- NDRI, ICAR-National before sequencing. Single molecule approach are the developing technology for sequencing which can Dairy Research Institute, provide the @1000$ per genome. Single molecule technology includes Helicos sequencer, SMRT, Karnal, Haryana, India Nanopore technology that does not require the amplification prior to sequencing. Data analysis can be time-consuming and may require special knowledge of bioinformatics to gather accurate information Neeti Lakhani from sequence data. -
1455189355674.Pdf
THE STORYTeller’S THESAURUS FANTASY, HISTORY, AND HORROR JAMES M. WARD AND ANNE K. BROWN Cover by: Peter Bradley LEGAL PAGE: Every effort has been made not to make use of proprietary or copyrighted materi- al. Any mention of actual commercial products in this book does not constitute an endorsement. www.trolllord.com www.chenaultandgraypublishing.com Email:[email protected] Printed in U.S.A © 2013 Chenault & Gray Publishing, LLC. All Rights Reserved. Storyteller’s Thesaurus Trademark of Cheanult & Gray Publishing. All Rights Reserved. Chenault & Gray Publishing, Troll Lord Games logos are Trademark of Chenault & Gray Publishing. All Rights Reserved. TABLE OF CONTENTS THE STORYTeller’S THESAURUS 1 FANTASY, HISTORY, AND HORROR 1 JAMES M. WARD AND ANNE K. BROWN 1 INTRODUCTION 8 WHAT MAKES THIS BOOK DIFFERENT 8 THE STORYTeller’s RESPONSIBILITY: RESEARCH 9 WHAT THIS BOOK DOES NOT CONTAIN 9 A WHISPER OF ENCOURAGEMENT 10 CHAPTER 1: CHARACTER BUILDING 11 GENDER 11 AGE 11 PHYSICAL AttRIBUTES 11 SIZE AND BODY TYPE 11 FACIAL FEATURES 12 HAIR 13 SPECIES 13 PERSONALITY 14 PHOBIAS 15 OCCUPATIONS 17 ADVENTURERS 17 CIVILIANS 18 ORGANIZATIONS 21 CHAPTER 2: CLOTHING 22 STYLES OF DRESS 22 CLOTHING PIECES 22 CLOTHING CONSTRUCTION 24 CHAPTER 3: ARCHITECTURE AND PROPERTY 25 ARCHITECTURAL STYLES AND ELEMENTS 25 BUILDING MATERIALS 26 PROPERTY TYPES 26 SPECIALTY ANATOMY 29 CHAPTER 4: FURNISHINGS 30 CHAPTER 5: EQUIPMENT AND TOOLS 31 ADVENTurer’S GEAR 31 GENERAL EQUIPMENT AND TOOLS 31 2 THE STORYTeller’s Thesaurus KITCHEN EQUIPMENT 35 LINENS 36 MUSICAL INSTRUMENTS -
Laboratory Glassware
This week we are launching Wikivoyage . Join us in creating a free travel guide that anyone can edit. Laboratory glassware From Wikipedia, the free encyclopedia Jump to: navigation, search This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (February 2011) Three beakers, an Erlenmeyer flask, a graduated cylinder and a volumetric flask Brown glass jars with some clear lab glassware in the background Laboratory glassware refers to a variety of equipment, traditionally made of glass, used for scientific experiments and other work in science, especially in chemistry and biology laboratories. Some of the equipment is now made of plastic for cost, ruggedness, and convenience reasons, but glass is still used for some applications because it is relatively inert, transparent, more heat-resistant than some plastics up to a point, and relatively easy to customize. Borosilicate glasses are often used because they are less subject to thermal stress and are common for reagent bottles. For some applications quartz glass is used for its ability to withstand high temperatures or its transparency in certain parts of the electromagnetic spectrum. In other applications, especially some storage bottles, darkened brown or amber (actinic) glass is used to keep out much of the UV and IR radiation so that the effect of light on the contents is minimized. Special-purpose materials are also used; for example, hydrofluoric acid is stored and used in polyethylene containers because it reacts with glass.[1] For pressurized reaction, heavy-wall glass is used for pressure reactor. -
Synthesis of Sequence-Verified Nucleic Acids Synthese Von Nukleinsäuren Mit Verifizierter Sequenz Synthèse D’Acides Nucléiques À Séquence Vérifiée
(19) TZZ ¥__T (11) EP 2 398 915 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/68 (2006.01) C12N 15/10 (2006.01) 24.08.2016 Bulletin 2016/34 (86) International application number: (21) Application number: 10705856.2 PCT/EP2010/052140 (22) Date of filing: 19.02.2010 (87) International publication number: WO 2010/094772 (26.08.2010 Gazette 2010/34) (54) SYNTHESIS OF SEQUENCE-VERIFIED NUCLEIC ACIDS SYNTHESE VON NUKLEINSÄUREN MIT VERIFIZIERTER SEQUENZ SYNTHÈSE D’ACIDES NUCLÉIQUES À SÉQUENCE VÉRIFIÉE (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A2-2008/022789 HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR • CALVET J P: "MOLECULAR APPROACHES FOR ANALYZING DIFFERENTIAL GENE (30) Priority: 20.02.2009 US 154091 P EXPRESSION: DIFFERENTIAL CDNA LIBRARY CONSTRUCTION AND SCREENING" PEDIATRIC (43) Date of publication of application: NEPHROLOGY, SPRINGER VERLAG, BERLIN, 28.12.2011 Bulletin 2011/52 DE LNKD- DOI:10.1007/BF00857891, vol. 5, no. 6, 1 January 1991 (1991-01-01) , pages 751-757, (73) Proprietor: Synthetic Genomics, Inc. XP008018106 ISSN: 0931-041X La Jolla, CA 92037 (US) • DROEGE M ET AL: "The Genome Sequencer FLX(TM) System-Longer reads, more (72) Inventors: applications, straight forward bioinformatics and • STÄHLER, Peer F. more complete data sets" JOURNAL OF 68167 Mannheim (DE) BIOTECHNOLOGY, ELSEVIER SCIENCE • CARAPITO, Raphaël PUBLISHERS, AMSTERDAM, NL LNKD- F-67100 Strasbourg (FR) DOI:10.1016/J.JBIOTEC.2008.03.021, vol. -
Linkage Disequilibrium Based Genotype Calling from Low- Coverage Shotgun Sequencing Reads
Linkage Disequilibrium Based Genotype Calling from Low- Coverage Shotgun Sequencing Reads Jorge Duitama1, Justin Kennedy1, Sanjiv Dinakar2, Y¨ozen Hern´andez3and Yufeng Wu1, Ion I. M˘andoiu∗1 1Department of Computer Science & Engineering, University of Connecticut,371 Fairfield Rd., Unit 2155, Storrs, CT 06269-2155, USA 2Department of Computer Science, University of Maryland,College Park, Maryland 20742, USA. 3Department of Computer Science, Hunter College,695 Park Avenue, New York, NY 10021, USA. Email: Jorge Duitama - [email protected]; Justin Kennedy - [email protected]; Sanjiv Dinakar - [email protected]; Y¨ozen Hern´andez - [email protected]; Yufeng Wu - [email protected]; Ion I. M˘andoiu∗- [email protected]; ∗Corresponding author Abstract Background: Recent technology advances have enabled sequencing of individual genomes, promising to revolutionize biomedical research. However, deep sequencing remains more expensive than microarrays for performing whole-genome SNP genotyping. Results: In this paper we introduce a new multi-locus statistical model and computationally efficient genotype calling algorithms that integrate shotgun sequencing data with linkage disequilibrium (LD) information extracted from reference population panels such as Hapmap or the 1000 genomes project. Experiments on publicly available 454, Illumina, and ABI SOLiD sequencing datasets suggest that integration of LD information results in genotype calling accuracy comparable to that of microarray platforms from sequencing data of low-coverage. A software package implementing our algorithm, released under the GNU General Public License, is available at http://dna.engr.uconn.edu/software/GeneSeq/. Conclusions: Integration of LD information leads to significant improvements in genotype calling accuracy compared to prior LD-oblivious methods, rendering low-coverage sequencing as a viable alternative to microarrays for conducting large-scale genome-wide association studies. -
Effects of Nitrogen-Fixing Symbiotic Cyanobacteria on the Microbial Ecology of the Coral, Montastraea Cavernosa
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2012 Effects of nitrogen-fixing symbiotic cyanobacteria on the microbial ecology of the coral, Montastraea cavernosa Jessica K. Jarett University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Jarett, Jessica K., "Effects of nitrogen-fixing symbiotic cyanobacteria on the microbial ecology of the coral, Montastraea cavernosa" (2012). Doctoral Dissertations. 652. https://scholars.unh.edu/dissertation/652 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. EFFECTS OF NITROGEN-FIXING SYMBIOTIC CYANOBACTERIA ON THE MICROBIAL ECOLOGY OF THE CORAL, MONTASTRAEA CAVERNOSA BY JESSICA KJARETT BS, Southampton College, 2005 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Microbiology May, 2012 UMI Number: 3525060 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. OiSi«Wior» Ftattlisttlfl UMI 3525060 Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. -
Genome-Based Biotechnologies in Aquaculture Citation: FAO
THEMATIC BACKGROUND STUDY Genome-based Biotechnologies in Aquaculture Citation: FAO. forthcoming. Genome-based biotechnologies in aquaculture. Rome The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The content of this document is entirely the responsibility of the author, and does not necessarily represent the views of the FAO or its Members. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by the Food and Agriculture Organization of the United Nations in preference to others of a similar nature that are not mentioned. Table of contents Abbreviations and acronyms iii Abstract v 1. INTRODUCTION 1 1.1 History of genomic research 1 1.2 Development of genomics as a new branch of science 1 1.3 Science demands the development of sequencing technologies 2 1.4 Aquaculture genomics, a historical review 3 2. TRADITIONAL GENETIC BIOTECHNOLOGIES FOR AQUACULTURE 4 2.1 Selective breeding 4 2.2 Polyploidy 5 2.3 Gynogenesis 6 2.4 Androgenesis 7 2.5 Sex reversal 7 2.6 Gene transfer 7 3. DNA MARKER TECHNOLOGIES 9 3.1 History of DNA marker technologies 9 3.2 Genomic variations as the basis of polymorphism 10 3.3 Allozyme markers 10 3.4 Restriction fragment length polymorphism markers 11 3.5 Mitochondrial DNA markers 11 3.6 DNA barcoding 12 3.7 RAPD markers 13 3.8 Amplified fragment length polymorphism markers 14 3.9 Microsatellite markers 15 3.10 SNP markers 17 3.11 Restriction site-associated DNA sequencing (RAD-) markers 19 4.