Revised Photometric Distances to Nearby Dwarf Galaxies in the IC 342/Maffei Complex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dwarf Galaxies: Probes for Galaxy Formation and Evolution
JD2 Dwarf Galaxies: Probes for Galaxy Formation and Evolution Chairpersons and Editors: E. Brinks &; T. X. Thuan Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 30 Sep 2021 at 22:48:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1539299600020074 MULTI-SPECTRAL STUDIES OF THE NEARBY DWARF GALAXIES UGCA86 AND LMC/SMC G. M. RICHTER Astrophysikalisches Institut Potsdam An der Sternwarte 16, D-14482 Potsdam, Germany gmrichter@aip. de M. BRAUN ESA-VILSPA ISOPHOT IDT Villafranca del Castillo, Satellite Tracking Station Apartado 50727, E-28080 Madrid, Spain [email protected] AND R. ASSENDORP Astrophysikalisches Institut Potsdam An der Sternwarte 16, D-14482 Potsdam, Germany rassendorp @aip. de 1. Background UGCA 86 is an irregular dwarf galaxy in the IC 342 / Maffei I group, just next to the Local Group. It was first mentioned by Zwicky (1968) as VII Zw 009, but not contained in his "Catalogue of Selected Compact Galaxies and of Post-eruptive Galaxies" (1971). It was independently rediscovered by Nilson (1974) and Rots (1979) as UGCA 86 and A 0355 resp. Rots found it by HI observations, and from peculiarities in the HI morphology and kinematics he suspected that it was interacting with IC 342. Thus, the tentatively interesting items: a starforming, low surface brightness dwarf galaxy in an interacting system (one of the nearest), triggered us to engage in more detailed studies. In a first step, we made detailed surface photometry in U, B and V (Richter et al. -
Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture?
A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât. 709, 91191 Gif-sur-Yvette, France 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Laboratoire d’Astrophysique de Marseille – LAM, Université d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 8 Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn VIC 3122, Australia 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Max-Planck für Extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching-bei-München, Germany 12 European Southern Observatory, Karl-Schwarzschild-Str. -
CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, -
Science in the Urantia Papers
Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate". -
National Observatories
Sidney C Wolff NOAO/DIR NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES Cerro Tololo Inter-American Observatory Kitt Peak National Observatory National Solar Observatory La Serena, Chile Tucson, Arizona 85726 Sunspot, New Mexico 88349 ANNUAL REPORT October 1996 - September 1997 October 30,1997 TABLE OF CONTENTS L INTRODUCTION IL AURA BOARD m. SCffiNTDJIC PROGRAM A. Cerro Tololo Inter-American Observatory (CTIO) 1. The Search for High Z Supernovae 2. Nearby Stars and Planets 2 B. Kitt Peak National Observatory (KPNO) 3 1. The History of Star Formation in Distant Galaxies 3 2. Oxygen Abundance and the Age of the Universe 4 3. The Age of Elliptical Galaxies - Is There Enough Time? 5 C. National Solar Observatory (NSO) 5 1. Results from GONG 5 2. High-Resolution Images of Solar Magnetic Fields 6 3. Active Optics Control Loop Closed at the Sac Peak Vacuum Tower Telescope 7 IV. DIVISION OPERATIONS 7 A. CTIO 7 Telescope Upgrades and Instrumentation 7 1. 4-m Upgrades 8 2. Major Instrumentation Efforts 9 3. SOAR 4-m Telescope Project 9 4. CCD Implementation and ARCON Controller Development 10 5. Existing Small General-User Telescopes on Cerro Tololo 10 6. New "Tenant" Installations and Upgrades 10 7. Other 11 B. KPNO 12 1. Image Quality Improvements 12 2. WTYN Queue Observing Experiment 12 3. WTYN 13 4. KPNO Instrumentation Improvements 14 5. Burrell-Schmidt 14 C. NSO 15 1. Kitt Peak 15 2. Sacramento Peak 17 3. Digital Library Development 21 D. USGP/ScOpe 21 E. NOAO Instrumentation 25 1. CCD Mosaic Imager 26 2. -
ASTRONOMY and ASTROPHYSICS the Elliptical Galaxy Formerly Known As the Local Group: Merging the Globular Cluster Systems
Astron. Astrophys. 358, 471–480 (2000) ASTRONOMY AND ASTROPHYSICS The elliptical galaxy formerly known as the Local Group: merging the globular cluster systems Duncan A. Forbes1,2, Karen L. Masters1, Dante Minniti3, and Pauline Barmby4 1 University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, UK 2 Swinburne University of Technology, Astrophysics and Supercomputing, Hawthorn, Victoria 3122, Australia 3 P. Universidad Catolica,´ Departamento de Astronom´ıa y Astrof´ısica, Casilla 104, Santiago 22, Chile 4 Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 5 November 1999 / Accepted 27 January 2000 Abstract. Prompted by a new catalogue of M31 globular clus- al. 1995; Minniti et al. 1996). Furthermore Hubble Space Tele- ters, we have collected together individual metallicity values for scope studies of merging disk galaxies reveal evidence for the globular clusters in the Local Group. Although we briefly de- GC systems of the progenitor galaxies (e.g. Forbes & Hau 1999; scribe the globular cluster systems of the individual Local Group Whitmore et al. 1999). Thus GCs should survive the merger of galaxies, the main thrust of our paper is to examine the collec- their parent galaxies, and will form a new GC system around tive properties. In this way we are simulating the dissipationless the newly formed elliptical galaxy. merger of the Local Group, into presumably an elliptical galaxy. The globular clusters of the Local Group are the best studied Such a merger is dominated by the Milky Way and M31, which and offer a unique opportunity to examine their collective prop- appear to be fairly typical examples of globular cluster systems erties (reviews of LG star clusters can be found in Brodie 1993 of spiral galaxies. -
Long Delayed Echo: New Approach to the Problem
Geometrical joke(r?)s for SETI. R. T. Faizullin OmSTU, Omsk, Russia Since the beginning of radio era long delayed echoes (LDE) were traced. They are the most likely candidates for extraterrestrial communication, the so-called "paradox of Stormer" or "world echo". By LDE we mean a radio signal with a very long delay time and abnormally low energy loss. Unlike the well-known echoes of the delay in 1/7 seconds, the mechanism of which have long been resolved, the delay of radio signals in a second, ten seconds or even minutes is one of the most ancient and intriguing mysteries of physics of the ionosphere. Nowadays it is difficult to imagine that at the beginning of the century any registered echo signal was treated as extraterrestrial communication: “Notable changes occurred at a fixed time and the analogy among the changes and numbers was so clear, that I could not provide any plausible explanation. I'm familiar with natural electrical interference caused by the activity of the Sun, northern lights and telluric currents, but I was sure, as it is possible to be sure in anything, that the interference was not caused by any of common reason. Only after a while it came to me, that the observed interference may occur as the result of conscious activities. I'm overwhelmed by the the feeling, that I may be the first men to hear greetings transmitted from one planet to the other... Despite the signal being weak and unclear it made me certain that soon people, as one, will direct their eyes full of hope and affection towards the sky, overwhelmed by good news: People! We got the message from an unknown and distant planet. -
A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques. -
The Triggering of Starbursts in Low-Mass Galaxies
Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 28 September 2018 (MN LATEX style file v2.2) The triggering of starbursts in low-mass galaxies Federico Lelli1;2 ?, Marc Verheijen2, Filippo Fraternali3;1 1Department of Astronomy, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA 2Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV, Groningen, The Netherlands 3Department of Physics and Astronomy, University of Bologna, via Berti Pichat 6/2, 40127, Bologna, Italy ABSTRACT Strong bursts of star formation in galaxies may be triggered either by internal or ex- ternal mechanisms. We study the distribution and kinematics of the H I gas in the outer regions of 18 nearby starburst dwarf galaxies, that have accurate star-formation histories from HST observations of resolved stellar populations. We find that star- burst dwarfs show a variety of H I morphologies, ranging from heavily disturbed H I distributions with major asymmetries, long filaments, and/or H I-stellar offsets, to lop- sided H I distributions with minor asymmetries. We quantify the outer H I asymmetry for both our sample and a control sample of typical dwarf irregulars. Starburst dwarfs have more asymmetric outer H I morphologies than typical irregulars, suggesting that some external mechanism triggered the starburst. Moreover, galaxies hosting an old burst (&100 Myr) have more symmetric H I morphologies than galaxies hosting a young one (.100 Myr), indicating that the former ones probably had enough time to regularize their outer H I distribution since the onset of the burst. We also investigate the nearby environment of these starburst dwarfs and find that most of them (∼80%) have at least one potential perturber at a projected distance .200 kpc. -
The Dipole Anisotropy of the 2 Micron All-Sky Redshift Survey
Mon. Not. R. Astron. Soc. 368, 1515–1526 (2006) doi:10.1111/j.1365-2966.2006.10243.x The dipole anisotropy of the 2 Micron All-Sky Redshift Survey Downloaded from https://academic.oup.com/mnras/article-abstract/368/4/1515/1151639 by MIDDLE EAST TECHNICAL UNIVERSITY LIBRARY user on 24 July 2020 , P. Erdo˘gdu,1,2 J. P. Huchra,3 O. Lahav,2 4 M. Colless,5 R. M. Cutri,6 E. Falco,3 T. George,7 T. Jarrett,6 D. H. Jones,8 C. S. Kochanek,9 L. Macri,10 J. Mader,11 N. Martimbeau,3 M. Pahre,3 Q. Parker,12 A. Rassat4 and W. Saunders5,13 1Department of Physics, Middle East Technical University, 06531 Ankara, Turkey 2School of Physics & Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD 3Harvard-Smithsonian Center of Astrophysics, 60 Garden Street, MS-20, Cambridge, MA 02138, USA 4Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT 5Anglo-Australian Observatory, PO Box 296, Epping, NSW 2052, Australia 6Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA 7California Institute of Technology, 4800 Oak Grove Drive, 302-231, Pasadena, CA 91109, USA 8Research School of Astronomy and Astrophysics, Mount Stromlo, and Siding Spring Observatories, Cotter Road, Weston Creek, ACT 2611, Australia 9Department of Astronomy, Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221, USA 10National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85726, USA 11W.M. Keck Observatory, Kamuela, HI 96743, USA 12Department of Physics, Macquarie University, Sydney, NWS 2109, Australia 13Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ Accepted 2006 February 23. -
Galaxy Data Name Constell
Galaxy Data name constell. quadvel km/s z type width ly starsDist. Satellite Milky Way many many 0 0.0000 SBbc 106K 200M 0 M31 Andromeda NQ1 -301 -0.0010 SA 220K 1T 2.54Mly M32 Andromeda NQ1 -200 -0.0007 cE2 Sat. 5K 2.49Mly M31 M110 Andromeda NQ1 -241 -0.0008 dE 15K 2.69M M31 NGC 404 Andromeda NQ1 -48 -0.0002 SA0 no 10M NGC 891 Andromeda NQ1 528 0.0018 SAb no 27.3M NGC 680 Aries NQ1 2928 0.0098 E pec no 123M NGC 772 Aries NQ1 2472 0.0082 SAb no 130M Segue 2 Aries NQ1 -40 -0.0001 dSph/GC?. 100 5E5 114Kly MW NGC 185 Cassiopeia NQ1 -185 -0.0006dSph/E3 no 2.05Mly M31 Dwingeloo 1 Cassiopeia NQ1 110 0.0004 SBcd 25K 10Mly Dwingeloo 2 Cassiopeia NQ1 94 0.0003Iam no 10Mly Maffei 1 Cassiopeia NQ1 66 0.0002 S0pec E3 75K 9.8Mly Maffei 2 Cassiopeia NQ1 -17 -0.0001 SABbc 25K 9.8Mly IC 1613 Cetus NQ1 -234 -0.0008Irr 10K 2.4M M77 Cetus NQ1 1177 0.0039 SABd 95K 40M NGC 247 Cetus NQ1 0 0.0000SABd 50K 11.1M NGC 908 Cetus NQ1 1509 0.0050Sc 105K 60M NGC 936 Cetus NQ1 1430 0.0048S0 90K 75M NGC 1023 Perseus NQ1 637 0.0021 S0 90K 36M NGC 1058 Perseus NQ1 529 0.0018 SAc no 27.4M NGC 1263 Perseus NQ1 5753 0.0192SB0 no 250M NGC 1275 Perseus NQ1 5264 0.0175cD no 222M M74 Pisces NQ1 857 0.0029 SAc 75K 30M NGC 488 Pisces NQ1 2272 0.0076Sb 145K 95M M33 Triangulum NQ1 -179 -0.0006 SA 60K 40B 2.73Mly NGC 672 Triangulum NQ1 429 0.0014 SBcd no 16M NGC 784 Triangulum NQ1 0 0.0000 SBdm no 26.6M NGC 925 Triangulum NQ1 553 0.0018 SBdm no 30.3M IC 342 Camelopardalis NQ2 31 0.0001 SABcd 50K 10.7Mly NGC 1560 Camelopardalis NQ2 -36 -0.0001Sacd 35K 10Mly NGC 1569 Camelopardalis NQ2 -104 -0.0003Ibm 5K 11Mly NGC 2366 Camelopardalis NQ2 80 0.0003Ibm 30K 10M NGC 2403 Camelopardalis NQ2 131 0.0004Ibm no 8M NGC 2655 Camelopardalis NQ2 1400 0.0047 SABa no 63M Page 1 2/28/2020 Galaxy Data name constell. -
Curriculum Vitae Paul T. P. Ho
Curriculum Vitae Paul T. P. Ho Address: Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan [email protected] Positions: 2015- Director James Clerk Maxwell Telescope 2014- Director General East Asian Observatory 2021- Corresponding Fellow 2002-2021 Distinguished Research Fellow 2005-2014 Director 2002-2003 Director Academia Sinica Institute of Astronomy and Astrophysics 2011- Greenland Telescope Principal Investigator 2019-2021 ELT/METIS Co-Investigator 2013-2018 ERG-Taiwan Principal Investigator 2005-2015 ALMA-Taiwan Principal Investigator 2002-2014 AMiBA Principal Investigator 2005-2014 SMA-Taiwan Principal Investigator 2008-2014 Subaru HSC-Taiwan Principal Investigator 2011-2014 SUMIRE/PFS-Taiwan Principal Investigator 2015-2018 Distinguished Visiting Fellow Korea Astronomy and Space Science Institute 1989-2015 Senior Astrophysicist 1989-2005 SMA Project Scientist Smithsonian Astrophysical Observatory 1 2018- Joint Professor of Physics National Cheng Kung University 2006- Adjunct Professor of Physics National Tsing Hua University 2003- Adjunct Professor of Astronomy National Central University 2003-2015 Joint Professor of Physics National Taiwan University 1986-1990 Associate Professor of Astronomy 1982-1986 Assistant Professor of Astronomy Harvard University 1979-1982 Miller Fellow, Research Associate Radio Astronomy Laboratory University of California, Berkeley 1977-1979 Research Associate Five College Radio Astronomy Observatory