Active Methylene Compound
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
1 Reactive Methylene Compounds As Synthons for Various Bio Active
Reactive methylene compounds as synthons for various bio active molecules Mohd. Shahnawaz khan1*, Saba Parveen Siddiqui2, Daya S. Seth3 1Department of Chemistry, JK. Lakshmipat University Jaipur (Raj) -302026, India 2Department of Chemistry Kendriya Vidhayalaya N0-1 Pratap Nagar, Udaipur (Raj) 313001, India 3Department of Chemistry, School of Chemical Sciences, St. John's College, Agra (UP)-282002, India *E-mail: [email protected] Abstract: Novel malonamic acid, hydrazide and amide were efficiently synthesized from the condensation of 3-NO2 aniline with diethyl malonate. Also the synthesis of coumarins, azo coumarins. benzocoumarins, cinnamamide, and α:β-unsaturated acid, were achieved by the reaction of above synthesized compounds in a single step reaction in good to excellent yields. And these eight compounds were tested for their antibacterial activities with two bacteria E. coli and S. aureus. Compounds are showing slightly to moderate antibacterial activities against same bacterias. Key words: Reactive methylene compounds, antibacterial activity. Introduction: Organic compounds containing the reactive methylene group provide excellent intermediates in synthetic organic chemistry. Such substances have been found to be useful as synthons for various bioactive agents. Using such type of compounds as starting material quiet a large number of heterocyclic and non-heterocyclic compounds can be prepared by condensing them with other substances. Heterocycles form by far the largest of classical divisions of organic chemistry. A broad spectrum of biological activity associated with heterocyclic compounds has attracted interest in drug discovery research. As evident from literature, both synthetic as well as natural oxygen and nitrogen containing heterocyclic molecules possesses significant antimicrobial activities and a large number have been made up to clinics for health care worldwide. -
United States Patent (19) 11 Patent Number: 4,880,935 Thorpe 45 Date of Patent: Nov
United States Patent (19) 11 Patent Number: 4,880,935 Thorpe 45 Date of Patent: Nov. 14, 1989 (54. HETEROBIFUNCTIONAL LINKING Wang et al., Israel Journal of Chem., vol. 12, 1974, pp. AGENTS DERVED FROM 375-389. N-SUCCNMDO-DTHO-ALPHIA Vallero et al., Science, 222, 1983, pp. 512-515. METHYL-METHYLENE-BENZOATES Camber et al., Method of Enzymol, 112, 1985, pp. 201-225. 75 Inventor: Philip E. Thorpe, London, England Langone et al., Method of Enzymol, 93, 1983, p. 280. Masuho et al., J. Biochem, 91, 1982, pp. 1583-1591. 73 Assignee: ICRF (Patents) Limited, London, Carlsson et al., Biochem. J., 1978, 173, pp. 723-737. England Calombatti et al., J. Immunol, 131, 1983, pp. 3091-3095. Brown et al., Cancer Res., vol. 45, 1985, pp. 1214-1221. 21 Appl. No.: 90,386 Ramakrishnonet al., Cancer Res., 44, 1984, pp. 201-208. 22 Filed: Aug. 27, 1987 Gras et al., J. of Immunol Methods, 81, 1985, pp. 283-297. Related U.S. Application Data Primary Examiner-Alan L. Rotman Attorney, Agent, or Firm-Nixon & Vanderhye 63 Continuation of Ser. No. 884,641, Jul 11, 1986, aban doned. (57 ABSTRACT The efficacy of immunotoxins having an antibody that 51) Int. Cl.".................. C07D 207/46; CO7D 207/48; recognizes a tumour associated antigen linked to a cyto CO7D 401/12 toxin through a heterobifunctional agent of the disul 52 U.S. Cl. ..................................... 546/281; 548/542 phide type is improved by providing in the heterobi 58 Field of Search ......................... 548/542; 546/281 functional agent a molecular grouping creating steric 56 References Cited hindrance in relation to the disulphide link. -
Converting Disulfide Bridges in Native Peptides to Stable Methylene Thioacetals
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Converting disulfide bridges in native peptides to stable methylene thioacetals† Cite this: Chem. Sci.,2016,7, 7007 C. M. B. K. Kourra and N. Cramer* Disulfide bridges play a crucial role in defining and rigidifying the three-dimensional structure of peptides. However, disulfides are inherently unstable in reducing environments. Consequently, the development of strategies aiming to circumvent these deficiencies – ideally with little structural disturbance – are highly sought after. Herein, we report a simple protocol converting the disulfide bond of peptides into highly stable methylene thioacetal. The transformation occurs under mild, biocompatible conditions, enabling the conversion of unprotected native peptides into analogues with enhanced stability. The developed Received 23rd May 2016 protocol is applicable to a range of peptides and selective in the presence of a multitude of potentially Accepted 24th July 2016 reactive functional groups. The thioacetal modification annihilates the reductive lability and increases the DOI: 10.1039/c6sc02285e serum, pH and temperature stability of the important peptide hormone oxytocin. Moreover, it is shown www.rsc.org/chemicalscience that the biological activities for oxytocin are retained. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction disulde bond engineering emerged as an important strategy to improve the metabolic stability of disulde-containing peptides, Peptides have recently been enjoying a renewed interest in whilst maintaining their biological activity. For instance, their application as therapeutic agents.1 They provide a large replacements of the disulde group with a lactam,10 thioether,11 a chemical space with a diverse array of molecular frameworks selenium12 or dicarba13 analogues have been reported.5 Many of for the development of novel therapeutics for a plethora of these methods require signicant modication of the synthetic biomedical applications. -
Guidelines for Drinking-Water Quality, Fourth Edition
12 Chemical fact sheets A conceptual framework for Introduction implementing the Guidelines (Chapter 1) (Chapter 2) he background docu- FRAMEWORK FOR SAFE DRINKING-WATER SUPPORTING Tments referred to in INFORMATION this chapter (as the princi- Health-based targets Public health context Microbial aspects pal reference for each fact (Chapter 3) and health outcome (Chapters 7 and 11) sheet) may be found on Water safety plans Chemical aspects (Chapter 4) (Chapters 8 and 12) the Water, Sanitation, Hy- System Management and Radiological Monitoring giene and Health web site assessment communication aspects at http://www.who.int/ (Chapter 9) Acceptability Surveillance water_sanitation_health/ aspects (Chapter 5) dwq/chemicals/en/index. (Chapter 10) html. A complete list of r eferences cited in this Application of the Guidelines in specic circumstances chapter, including the (Chapter 6) background documents Climate change, Emergencies, Rainwater harvesting, Desalination for each c hemical, is pro- systems, Travellers, Planes and vided in Annex 2. ships, etc. 12.1 Chemical contaminants in drinking-water Acrylamide Residual acrylamide monomer occurs in polyacrylamide coagulants used in the treat- ment of drinking-water. In general, the maximum authorized dose of polymer is 1 mg/l. At a monomer content of 0.05%, this corresponds to a maximum theoretical concen- tration of 0.5 µg/l of the monomer in water. Practical concentrations may be lower by a factor of 2–3. This applies to the anionic and non-ionic polyacrylamides, but residual levels from cationic polyacrylamides may be higher. Polyacrylamides are also used as grouting agents in the construction of drinking-water reservoirs and wells. -
Isolation and Structure Elucidation of Pyridine Alkaloids from the Aerial
www.nature.com/scientificreports OPEN Isolation and structure elucidation of pyridine alkaloids from the aerial parts of the Mongolian medicinal plant Caryopteris mongolica Bunge Dumaa Mishig1,2,3, Margit Gruner1, Tilo Lübken1, Chunsriimyatav Ganbaatar1,2, Duger Regdel2 & Hans‑Joachim Knölker1* The seven pyridine alkaloids 1–7, the favonoid acacetin (8), and L‑proline anhydride (9) have been isolated from the aerial parts of the Mongolian medicinal plant Caryopteris mongolica Bunge. The structures of the natural products 1–9 have been assigned by MS, as well as IR, 1D NMR (1H, 13C, DEPT), and 2D NMR (COSY, HSQC, HMBC, NOESY) spectroscopic methods. The compounds 2 and 4–7 represent new chemical structures. Acacetin (8) and L‑proline anhydride (9) have been obtained from C. mongolica for the frst time. Caryopteris mongolica Bunge is a deciduous shrub and belongs to the Verbenaceae family. C. mongolica which is widely distributed in the mountainous and Gobi regions of Mongolia (Khentei, Khangai, Mongol-Daurian, Mid- dle Khalkha, Mongolian Altai, East Mongolia Valley of Lakes, Govi-Altai, East Govi, Trans-Altai Gobi, Gobi and Alashan Gobi)1. In fact only this species of Caryopteris is growing in Mongolia, whereas about 16 species of this genus occur all over the world. In traditional Mongolian medicine, the aerial parts of this plant have been prepared as decoction and used for haemorrhage, increasing muscle strength, urinary excretion, pulmonary windy oedema and chronic bronchitis2. In Chinese folk medicine, Caryopteris ternifora has been used as anti- pyretic, detoxifying, expectorant, and anti-infammatory agent and for the treatment of cold, tuberculosis and rheumatism3. -
Ijmp.Jor.Br V
INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. 10, n. 8, Special Edition Seng 2019 ISSN: 2236-269X DOI: 10.14807/ijmp.v10i8.1046 A NEW HYPOTHESIS ABOUT THE NUCLEAR HYDROGEN STRUCTURE Relly Victoria Virgil Petrescu IFToMM, Romania E-mail: [email protected] Raffaella Aversa University of Naples, Italy E-mail: [email protected] Antonio Apicella University of Naples, Italy E-mail: [email protected] Taher M. Abu-Lebdeh North Carolina A and T State Univesity, United States E-mail: [email protected] Florian Ion Tiberiu Petrescu IFToMM, Romania E-mail: [email protected] Submission: 5/3/2019 Accept: 5/20/2019 ABSTRACT In other papers already presented on the structure and dimensions of elemental hydrogen, the elementary particle dynamics was taken into account in order to be able to determine the size of the hydrogen. This new work, one comes back with a new dynamic hypothesis designed to fundamentally change again the dynamic particle size due to the impulse influence of the particle. Until now it has been assumed that the impulse of an elementary particle is equal to the mass of the particle multiplied by its velocity, but in reality, the impulse definition is different, which is derived from the translational kinetic energy in a rapport of its velocity. This produces an additional condensation of matter in its elemental form. Keywords: Particle structure; Impulse; Condensed matter. [http://creativecommons.org/licenses/by/3.0/us/] Licensed under a Creative Commons Attribution 3.0 United States License 1749 INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. -
Silanes for Powerful Connections
Creating tomorrow’s solutions SILANES I ORGANOFUNCTIONAL FOR POWERFUL CONNECTIONS You’ve never worked like this WITH SILANES OUR GENIOSIL® TRADEMARK WACKER organofunctional silanes, WACKER has been actively researching Contents marketed under the trademark and developing organofunctional silanes GENIOSIL®, include our established for decades. Chemically and technologi- The GENIOSIL® Trademark 3 standard silanes as well as numerous cally, they are closely related to silicones, Organofunctional Silanes 4 specialty silanes that will be of use which have always constituted one of Chemical Bonding to in a variety of new application areas. our core businesses. Our experience in Organic Polymers 6 these fields, together with our expertise The “a Effect” 8 We encounter industrial products con- in organic fine chemicals, enables us GENIOSIL® für Adhesives and taining organofunctional silanes every to continuously develop innovative Sealants 12 day, and without them, the world as processes and products in these key Product Overview GENIOSIL® we know it would be hard to imagine. technologies. Organofunctional Silanes 16 As an important component of paints Product Overview and varnishes, organofunctional silanes Today, WACKER produces a broad range Non-functional Silanes 18 ensure that they adhere to a variety of organofunctional silanes and markets WACKER at a Glance 19 of substrates and last for many years. them under the GENIOSIL® trademark. Adhesives containing silanes can replace The product portfolio includes not only rivets and bolts, while silane-modified the established, standard products, but fillers and glass fibers reinforce plastics, also novel molecules with unrivaled prop- thus making them suitable for a huge erties. These open up completely new range of applications. -
Bioresorbable Stereochemically Defined Polymers for Tissue Engineering and Wireless Bio-Integrated Electronic Device Applications
© 2021 Yen-Hao Hsu ALL RIGHTS RESERVED BIORESORBABLE STEREOCHEMICALLY DEFINED POLYMERS FOR TISSUE ENGINEERING AND WIRELESS BIO-INTEGRATED ELECTRONIC DEVICE APPLICATIONS A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Yen-Hao Hsu March, 2021 BIORESORBABLE STEREOCHEMICALLY DEFINED POLYMERS FOR TISSUE ENGINEERING AND WIRELESS BIO-INTEGRATED ELECTRONIC DEVICE APPLICATIONS Yen-Hao Hsu Dissertation Approved: Accepted: _______________________________ ______________________________ Advisor Interim Director of SPSPE Dr. Matthew L. Becker Dr. Ali Dhinojwala _______________________________ ______________________________ Committee Member Interim Dean of the College Dr. Yu Zhu Dr. Craig Menzemer _______________________________ ______________________________ Committee Member Interim Director, Graduate School Dr. Chrys Wesdemiotis Dr. Marnie Saunders _______________________________ ______________________________ Committee Member Date Dr. Xiong Gong _______________________________ Committee Member Dr. Kevin A. Cavicchi iii ABSTRACT In most synthetic bioresorbable polymers, changing the physical properties such as elasticity and toughness by monomers results in a change to the crystallinity of the material, which manifests through alteration of its mechanical performance. “Thiol-yne” click chemistry has been discovered as an efficient methodology for step-growth polymerization between thiols and activated alkynes. Variation of the solvent polarity -
Bio-Based Reactive Diluents and Thiol-Ene
BIO-BASED REACTIVE DILUENTS AND THIOL-ENE PHOTOPOLYMERIZATION FOR ENVIRONMENTALLY BENIGN COATINGS A Dissertation Presented to The Graduate Faculty of the University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Kosin Wutticharoenwong December, 2007 BIO-BASED REACTIVE DILUENTS AND THIOL-ENE PHOTOPOLYMERIZATION FOR ENVIRONMENTALLY BENIGN COATINGS Kosin Wutticharoenwong Dissertation Approved: Accepted: _____________________________ _____________________________ Advisor Department Chair Dr. Mark D. Soucek Dr. Sadhan C. Jana _____________________________ _____________________________ Committee Member Dean of the College Dr. Kevin Cavicchi Dr. Stephen Cheng _____________________________ _____________________________ Committee Member Dean of the Graduate School Dr. Kyonsuku Min Cakmak Dr. George R. Newkome _____________________________ _____________________________ Committee Member Date Dr. George Chase _____________________________ Committee Member Dr. Wiley J. Youngs ii ABSTRACT Tung oil was used as diene for modification via a Diels-Alder reaction with acrylate dienophiles. Tung oil was modified with three different acrylate molecules: 3- methacryloxypropyl trimethoxysilane (MAS), 2,2,2-trifluoroethyl methacrylate (TFM) and triallyl ether acrylate (TAEA) at atmospheric pressure. The modified tung oils were characterized using 1H NMR, 13C NMR, and FT-IR. The molecular weight and distribution were characterized using GPC, and MALDI-TOF. The effects of new acrylate modified tung oils on the properties of alkyd-based coatings film were investigated including hardness, solvent resistance, flexibility, gloss, impact resistance, contact angle, tensile, and thermo-mechanical properties. The viscosity can be reduced to the application viscosity of the alkyd by the reactive diluents. Drying time study showed that drying time can be altered by types and level of diluent added. All the results revealed that modified tung oils can be used as volatile organic compound (VOC) compliant in alkyd systems. -
Subhra Bhattacharya, Eric Oliver, Deva H. Puranam and Stephen C
GCMS IMPURITY PROFILING OF METHYLENE CHLORIDE – A SOLVENT WIDELY USED IN PHARMACEUTICAL, ENVIRONMENTAL AND CHEMICAL INDUSTRIES Subhra Bhattacharya, Eric Oliver, Deva H. Puranam and Stephen C. Roemer Thermo Fisher Scientific – Global Chemicals, One Reagent Lane, Fair Lawn, NJ ABSTRACT Figure 1. Schematic of Dedicated Distillation Unit (1000 gal capacity) Figure 3. Supplier #1 Raw Material February 2012 – Extracted Ion Chromatogram of m/z 140 and m/z 12 Figure 6. Supplier #2 Raw Material and Purified Product February 2013 Figure 10. EIC of m/z 104, Mass Spectra and NIST Result • Gas chromatography mass spectrometry (GCMS) has gained broad usage in pharmaceutical, environmental, and chemical research because the technique supports qualitative and quantitative applications with low limits of detection. Methylene chloride is commonly used as an extraction solvent for trace analysis of organic molecules by GCMS. Production of ultrapure methylene chloride has become a challenge due to instrumentation advances leading to ever-lower analyte detection limits. Analysis of raw materials and the corresponding purified solvents by GCMS generates relevant information regarding the nature of the impurities and help to explore new strategies for producing ultrapure methylene chloride. • In the current work, GCMS was used to evaluate the impurity profile of raw methylene chloride from different sources as well as the finished product in order to track the movement and accumulation of impurities in the solvent through the distillation and packaging processes. Rotary evaporation was used to concentrate the solvent, 1000-fold for raw material and 4000-fold for distilled product. GCMS data were collected using Thermo Scientific Trace GC Ultra-MSQ instrument. -
Methylene Chloride
Methylene Chloride Methylene Chloride (CH2Cl2) CAS 75-09-2; UN 1593 Synonyms include dichloromethane, methylene bichloride, methane dichloride, and methylene dichloride. • Persons exposed only to methylene chloride vapor do not pose risks of secondary contamination. Persons whose clothing or skin is contaminated with liquid methylene chloride can cause secondary contamination by direct contact or through off-gassing vapor. • Odor is not an adequate warning property for methylene chloride • Methylene chloride is a combustible liquid, but its vapor is flammable only when present in relatively high concentrations (14% to 22% in air). • Methylene chloride is absorbed readily after inhalation and ingestion. Skin absorption is slow but may contribute to total body burden. Description At room temperature, methylene chloride is a clear, colorless liquid with a pleasant odor. It is volatile, producing potentially toxic concentrations at room temperature. It is slightly soluble in water and miscible with most organic solvents. Routes of Exposure Inhalation Inhalation is the most important route of exposure and methylene chloride vapor is absorbed readily from the lungs. Odor is not an adequate warning property for methylene chloride, the odor threshold is 250 ppm, which is 10 times higher than the OSHA PEL (25 ppm). Olfactory fatigue may also occur at high concentrations. Methylene chloride is heavier than air and may cause asphyxiation in enclosed, poorly ventilated, or low-lying areas. Children exposed to the same levels of methylene chloride vapor as adults may receive larger doses because they have greater lung surface area:body weight ratios and increased minute volumes:weight ratios. In addition, they may be exposed to higher levels than adults in the same location because of their short stature and the higher levels of methylene chloride vapor found nearer to the ground.