Download PL / I Structured Programming Free Ebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programming Paradigms & Object-Oriented
4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Syllabus Content: 4.3.1 Programming paradigms Show understanding of what is meant by a programming paradigm Show understanding of the characteristics of a number of programming paradigms (low- level, imperative (procedural), object-oriented, declarative) – low-level programming Demonstrate an ability to write low-level code that uses various address modes: o immediate, direct, indirect, indexed and relative (see Section 1.4.3 and Section 3.6.2) o imperative programming- see details in Section 2.3 (procedural programming) Object-oriented programming (OOP) o demonstrate an ability to solve a problem by designing appropriate classes o demonstrate an ability to write code that demonstrates the use of classes, inheritance, polymorphism and containment (aggregation) declarative programming o demonstrate an ability to solve a problem by writing appropriate facts and rules based on supplied information o demonstrate an ability to write code that can satisfy a goal using facts and rules Programming paradigms 1 4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Programming paradigm: A programming paradigm is a set of programming concepts and is a fundamental style of programming. Each paradigm will support a different way of thinking and problem solving. Paradigms are supported by programming language features. Some programming languages support more than one paradigm. There are many different paradigms, not all mutually exclusive. Here are just a few different paradigms. Low-level programming paradigm The features of Low-level programming languages give us the ability to manipulate the contents of memory addresses and registers directly and exploit the architecture of a given processor. -
A Feature Model of Actor, Agent, Functional, Object, and Procedural Programming Languages
Accepted Manuscript A feature model of actor, agent, functional, object, and procedural programming languages H.R. Jordan, G. Botterweck, J.H. Noll, A. Butterfield, R.W. Collier PII: S0167-6423(14)00050-1 DOI: 10.1016/j.scico.2014.02.009 Reference: SCICO 1711 To appear in: Science of Computer Programming Received date: 9 March 2013 Revised date: 31 January 2014 Accepted date: 5 February 2014 Please cite this article in press as: H.R. Jordan et al., A feature model of actor, agent, functional, object, and procedural programming languages, Science of Computer Programming (2014), http://dx.doi.org/10.1016/j.scico.2014.02.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights • A survey of existing programming language comparisons and comparison techniques. • Definitions of actor, agent, functional, object, and procedural programming concepts. • A feature model of general-purpose programming languages. • Mappings from five languages (C, Erlang, Haskell, Jason, and Java) to this model. A Feature Model of Actor, Agent, Functional, Object, and Procedural Programming Languages H.R. Jordana,∗, G. Botterwecka, J.H. Nolla, A. Butterfieldb, R.W. Collierc aLero, University of Limerick, Ireland bTrinity College Dublin, Dublin 2, Ireland cUniversity College Dublin, Belfield, Dublin 4, Ireland Abstract The number of programming languages is large [1] and steadily increasing [2]. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
15-150 Lectures 27 and 28: Imperative Programming
15-150 Lectures 27 and 28: Imperative Programming Lectures by Dan Licata April 24 and 26, 2012 In these lectures, we will show that imperative programming is a special case of functional programming. We will also investigate the relationship between imperative programming and par- allelism, and think about what happens when the two are combined. 1 Mutable Cells Functional programming is all about transforming data into new data. Imperative programming is all about updating and changing data. To get started with imperative programming, ML provides a type 'a ref representing mutable memory cells. This type is equipped with: • A constructor ref : 'a -> 'a ref. Evaluating ref v creates and returns a new memory cell containing the value v. Pattern-matching a cell with the pattern ref p gets the contents. • An operation := : 'a ref * 'a -> unit that updates the contents of a cell. For example: val account = ref 100 val (ref cur) = account val () = account := 400 val (ref cur) = account 1. In the first line, evaluating ref 100 creates a new memory cell containing the value 100, which we will write as a box: 100 and binds the variable account to this cell. 2. The next line pattern-matches account as ref cur, which binds cur to the value currently in the box, in this case 100. 3. The next line updates the box to contain the value 400. 4. The final line reads the current value in the box, in this case 400. 1 It's important to note that, with mutation, the same program can have different results if it is evaluated multiple times. -
Functional and Imperative Object-Oriented Programming in Theory and Practice
Uppsala universitet Inst. för informatik och media Functional and Imperative Object-Oriented Programming in Theory and Practice A Study of Online Discussions in the Programming Community Per Jernlund & Martin Stenberg Kurs: Examensarbete Nivå: C Termin: VT-19 Datum: 14-06-2019 Abstract Functional programming (FP) has progressively become more prevalent and techniques from the FP paradigm has been implemented in many different Imperative object-oriented programming (OOP) languages. However, there is no indication that OOP is going out of style. Nevertheless the increased popularity in FP has sparked new discussions across the Internet between the FP and OOP communities regarding a multitude of related aspects. These discussions could provide insights into the questions and challenges faced by programmers today. This thesis investigates these online discussions in a small and contemporary scale in order to identify the most discussed aspect of FP and OOP. Once identified the statements and claims made by various discussion participants were selected and compared to literature relating to the aspects and the theory behind the paradigms in order to determine whether there was any discrepancies between practitioners and theory. It was done in order to investigate whether the practitioners had different ideas in the form of best practices that could influence theories. The most discussed aspect within FP and OOP was immutability and state relating primarily to the aspects of concurrency and performance. This thesis presents a selection of representative quotes that illustrate the different points of view held by groups in the community and then addresses those claims by investigating what is said in literature. -
Unit 2 — Imperative and Object-Oriented Paradigm
Programming Paradigms Unit 2 — Imperative and Object-oriented Paradigm J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 1/38 Outline 1 Imperative Programming Paradigm 2 Abstract Data Types 3 Object-oriented Approach PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 2/38 Imperative Programming Paradigm Outline 1 Imperative Programming Paradigm 2 Abstract Data Types 3 Object-oriented Approach PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 3/38 Imperative Programming Paradigm Imperative Paradigm/1 The imperative paradigm is the oldest and most popular paradigm Based on the von Neumann architecture of computers Imperative programs define sequences of commands/statements for the computer that change a program state (i.e., set of variables) Commands are stored in memory and executed in the order found Commands retrieve data, perform a computation, and assign the result to a memory location Data ←→ Memory CPU (Data and Address Program) ←→ The hardware implementation of almost all Machine code computers is imperative 8B542408 83FA0077 06B80000 Machine code, which is native to the C9010000 008D0419 83FA0376 computer, and written in the imperative style B84AEBF1 5BC3 PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 4/38 Imperative Programming Paradigm Imperative Paradigm/2 Central elements of imperative paradigm: Assigment statement: assigns values to memory locations and changes the current state of a program Variables refer -
A Formal Component-Based Software Engineering Approach for Developing Trustworthy Systems
A FORMAL COMPONENT-BASED SOFTWARE ENGINEERING APPROACH FOR DEVELOPING TRUSTWORTHY SYSTEMS MUBARAK SAMI MOHAMMAD A THESIS IN THE DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE) CONCORDIA UNIVERSITY MONTREAL´ ,QUEBEC´ ,CANADA APRIL 2009 °c MUBARAK SAMI MOHAMMAD, 2009 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Mr. Mubarak Sami Mohammad Entitled: A Formal Component-Based Software Engineering Approach for Developing Trustworthy Systems and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science) (Computer Science) complies with the regulations of this University and meets the accepted standards with re- spect to originality and quality. Signed by the final examining committee: Chair Dr. External Examiner Dr. Nicholas Graham External to Program Dr. Jamal Bentahar Examiner Dr. Joey Paquet Examiner Dr. Juergen Rilling Supervisor Dr. Vasu Alagar Co-supervisor Dr. Olga Ormandjieva Approved Chair of Department or Graduate Program Director 20 Dr. Robin A.L. Drew, Dean Faculty of Engineering and Computer Science Abstract A Formal Component-Based Software Engineering Approach for Developing Trustworthy Systems Mubarak Sami Mohammad, Ph.D. Concordia University, 2009 Software systems are increasingly becoming ubiquitous, affecting the way we experience the world. Embedded software systems, especially those used in smart devices, have be- come an essential constituent of the technological infrastructure of modern societies. Such systems, in order to be trusted in society, must be proved to be trustworthy. Trustworthiness is a composite non-functional property that implies safety, timeliness, security, availability, and reliability. -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Programming Languages
Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 General Items: Computer Program • Lab? Ok? • Read the extra credits • A series of instructions that direct a computer to perform tasks • Need to come to class • Such as? Who is the programmer? • Have a quiz / no books / use notes -> What is the big idea • School is almost over • Programming language is a series of rules for writing the instructions • • There are hundreds of computer programs – need-based! Reading Materials: Programming language • - Two basic types: Low- and high-level programming languages Miscellaneous: o Low-level: Programming language that is machine-dependent ° Must be run on specific machines o High-level: Language that is machine-independent ° Can be run on different types of machines Programming Language Low Level High Level Machine Assembly Language Language Procedural Nonprocedural Remember: Ultimately, everything must be converted to the machine language! Object Oriented F.Farahmand 1 / 12 File: lec14chap13f04.doc F.Farahmand 2 / 12 File: lec14chap13f04.doc Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 Categories of programming languages o Nonprocedural language -> Programmer specifies only what the - Machine language program should accomplish; it does not explain how o Only language computer understands directly - Forth-generation language - Assembly language o Syntax is closer to human language than that -
Functional Programming Functional Vs. Imperative Referential
Functional vs. Imperative Referential transparency Imperative programming concerned with “how.” The main (good) property of functional programming is Functional Programming referential transparency. Functional programming concerned with “what.” COMS W4115 Every expression denotes a single value. Based on the mathematics of the lambda calculus Prof. Stephen A. Edwards (Church as opposed to Turing). The value cannot be changed by evaluating an expression Spring 2003 or by sharing it between different parts of the program. “Programming without variables” Columbia University No references to global data; there is no global data. Department of Computer Science It is inherently concise, elegant, and difficult to create subtle bugs in. There are no side-effects, unlike in referentially opaque Original version by Prof. Simon Parsons languages. It’s a cult: once you catch the functional bug, you never escape. The Joy of Pascal Strange behavior Variables program example(output) This prints 5 then 4. At the heart of the “problem” is fact that the global data var flag: boolean; flag affects the value of f. Odd since you expect function f(n:int): int In particular begin f (1) + f (2) = f (2) + f (1) if flag then f := n flag := not flag else f := 2*n; gives the offending behavior flag := not flag Mathematical functions only depend on their inputs end They have no memory Eliminating assignments eliminates such problems. begin In functional languages, variables not names for storage. flag := true; What does this print? Instead, they’re names that refer to particular values. writeln(f(1) + f(2)); writeln(f(2) + f(1)); Think of them as not very variables. -
C++ Tutorial Part I : Procedural Programming
C++ Tutorial Part I : Procedural Programming C. David Sherrill School of Chemistry and Biochemistry School of Computational Science and Engineering Georgia Institute of Technology Purpose To provide rapid training in elements of C++ syntax, C++ procedural programming, and C++ object- oriented programming for those with some basic prior programming experience To provide a handy programming reference for selected topics To provide numerous, actual C++ code examples for instruction and reference Why C++? “Intermediate”-level language: allows for fine (low- level) control over hardware, yet also allows certain complex tasks to be done with relatively little code (high-level) Good for scientific applications: produces efficient, compiled code, yet has features that help one develop and maintain a complicated, large code (e.g., namespaces, object-oriented design) Recommended reading These notes were developed during my reading of “Sams Teach Yourself C++ in One Hour a Day,” 7th Edition, by Siddhartha Rao (Sams, Indianapolis, 2012). I recommend the book, it’s readable and to the point. A good mastery of C++ will probably require working through a book like that one, and doing some examples; notes like these only serve as a basic introduction or a quick review A Note on C++11 This was originally supposed to be C++0x, with the “x” filled in according to the year the new C++ standard was finalized (e.g., C++09 for 2009). However, the standard took longer than expected, and was only formalized in 2011. So, C++11 is what was formerly referred to as C++0x. As of 2013, the new C++11 standards are not yet fully implemented in many compilers. -
Imperative Programming Languages (IPL)
Imperative Programming Languages (IPL) © Definitions: • The imperative (or procedural) paradigm is the closest to the structure of actual computers. • It is a model that is based on moving bits around and changing machine state • Programming languages based on the imperative paradigm have the following characteristics: The basic unit of abstraction is the PROCEDURE, whose basic structure is a sequence of statements that are executed in succession, abstracting the way that the program counter is incremented so as to proceed through a series of machine instructions residing in sequential hardware memory cells. The sequential flow of execution can be modified by conditional and looping statements (as well as by the very low-level goto statement found in many imperative languages), which abstract the conditional and unconditional branch instructions found in the underlying machine instruction set. Variables play a key role, and serve as abstractions of hardware memory cells. Typically, a given variable may assume many different values of the course of the execution of a program, just as a hardware memory cell may contain many different values. Thus, the assignment statement is a very important and frequently used statement. © Examples of imperative languages: • FORTRAN, Algol, COBOL, Pascal, C (and to some extent C++), BASIC, Ada - and many more. © PL/I • PL/I (1963-5): was one of the few languages that attempted to be a general purpose language, rather than aiming at a particular category of programming. • PL/I incorporated a blend of features from FORTRAN, ALGOL, and COBOL, plus allowed programmers to create concurrent tasks, handle run-time exceptions, use recursive procedures, and use pointers.