NSL3 Variant Map for 2300AD

Total Page:16

File Type:pdf, Size:1020Kb

NSL3 Variant Map for 2300AD 2300AD Star Map based on Near Star List III Human Homeworld / Colony Homeworld -60 to -30 ly A Blue Human Outpost Trade Route - Chinese Arm -30 to -10 ly F White Kafer Homeworld / Colony Major Trade Route - Chinese Arm Other Route - Chinese Trade Route - American Arm -10 to +10 ly G Yellow Kafer Outpost Major Trade Route - American Arm Other Route - America Trade Route- French Arm +10 to +30 ly K Orange Ylii Homeworld / Colony Major Trade Route- French Arm Other Route- French A M Red Alien Homeworld / Colony +30 to +60 ly -60.0 -59.5 -59.0 -58.5 -58.0 -57.5 -57.0 -56.5 -56.0 -55.5 -55.0 -54.5 -54.0 -53.5 -53.0 -52.5 -52.0 -51.5 -51.0 -50.5 -50.0 -49.5 -49.0 -48.5 -48.0 -47.5 -47.0 -46.5 -46.0 -45.5 -45.0 -44.5 -44.0 -43.5 -43.0 -42.5 -42.0 -41.5 -41.0 -40.5 -40.0 -39.5 -39.0 -38.5 -38.0 -37.5 -37.0 -36.5 -36.0 -35.5 60.0 59.5 59.0 58.5 DM-13 2420 58.0 57.5 DM+22 1921 57.0 56.5 56.0 55.5 55.0 54.5 54.0 DM+21 1949 AC-1 409-15 53.5 53.0 52.5 52.0 51.5 51.0 DM+7 1997 50.5 50.0 49.5 DM+12 1888 Ross 686 49.0 48.5 DM-5 2603 48.0 47.5 47.0 46.5 46.0 DM-5 2778 45.5 45.0 44.5 DM+1 2277 44.0 DM-42 4577 43.5 43.0 42.5 42.0 41.5 DM+8 2131 DM-20 2936 41.0 DM+5 2143 DM-5 2802 40.5 DM+34 1949 40.0 39.5 39.0 38.5 38.0 37.5 Ross 84 37.0 DM-8 2689 36.5 36.0 AC+27 24424 35.5 DM+40 2208 35.0 DM-44 5200 34.5 Theta Antilae 34.0 DM+27 1775 2300AD Star Map based on Near Star List III Human Homeworld / Colony Homeworld -60 to -30 ly A Blue Human Outpost Trade Route - Chinese Arm -30 to -10 ly F White Kafer Homeworld / Colony Major Trade Route - Chinese Arm Other Route - Chinese Trade Route - American Arm -10 to +10 ly G Yellow Kafer Outpost Major Trade Route - American Arm Other Route - America Trade Route- French Arm +10 to +30 ly K Orange Ylii Homeworld / Colony Major Trade Route- French Arm Other Route- French A M Red Alien Homeworld / Colony +30 to +60 ly -60.0 -59.5 -59.0 -58.5 -58.0 -57.5 -57.0 -56.5 -56.0 -55.5 -55.0 -54.5 -54.0 -53.5 -53.0 -52.5 -52.0 -51.5 -51.0 -50.5 -50.0 -49.5 -49.0 -48.5 -48.0 -47.5 -47.0 -46.5 -46.0 -45.5 -45.0 -44.5 -44.0 -43.5 -43.0 -42.5 -42.0 -41.5 -41.0 -40.5 -40.0 -39.5 -39.0 -38.5 -38.0 -37.5 -37.0 -36.5 -36.0 -35.5 DM+3 2279 33.5 DM+15 2003 33.0 DM+29 1883 32.5 Ross 83 32.0 AC+27 25300 31.5 DM+35 2110 Ross 439 31.0 DM-40 5628 30.5 30.0 29.5 29.0 28.5 DM-2 2901 28.0 27.5 27.0 26.5 DM+20 2466 DM-35 6194 26.0 DM-32 7158 25.5 DM-46 5923 25.0 24.5 DM-17 3088 DM-52 3377 24.0 CFS7007 23.5 23.0 DM-2 3000 22.5 DM+23 2207 DM+45 1791 22.0 21.5 DM+53 1395 21.0 DM-9 3070 20.5 20.0 DM+ 19.5 19.0 18.5 L1113-55 18.0 17.5 17.0 DM+49 1961 16.5 16.0 15.5 15.0 14.5 AC-17 31766 AC+43 447-29 14.0 DM-27 7881 13.5 13.0 Beta Crateris DM+5 2463 DM-14 3277 12.5 12.0 DM-43 6619 11.5 G44 11.0 Delta Leonis DM+36 2162 10.5 DM-17 3336 10.0 9.5 DM+19 2443 9.0 DM+3 2502 8.5 AC+44 472-15 8.0 2300AD Star Map based on Near Star List III Human Homeworld / Colony Homeworld -60 to -30 ly A Blue Human Outpost Trade Route - Chinese Arm -30 to -10 ly F White Kafer Homeworld / Colony Major Trade Route - Chinese Arm Other Route - Chinese Trade Route - American Arm -10 to +10 ly G Yellow Kafer Outpost Major Trade Route - American Arm Other Route - America Trade Route- French Arm +10 to +30 ly K Orange Ylii Homeworld / Colony Major Trade Route- French Arm Other Route- French A M Red Alien Homeworld / Colony +30 to +60 ly -60.0 -59.5 -59.0 -58.5 -58.0 -57.5 -57.0 -56.5 -56.0 -55.5 -55.0 -54.5 -54.0 -53.5 -53.0 -52.5 -52.0 -51.5 -51.0 -50.5 -50.0 -49.5 -49.0 -48.5 -48.0 -47.5 -47.0 -46.5 -46.0 -45.5 -45.0 -44.5 -44.0 -43.5 -43.0 -42.5 -42.0 -41.5 -41.0 -40.5 -40.0 -39.5 -39.0 -38.5 -38.0 -37.5 -37.0 -36.5 -36.0 -35.5 DM-25 8682 7.5 DM+23 2359 7.0 6.5 6.0 Ros DM-50 6060 5.5 DM+45 1947 5.0 DM-56 3980 4.5 4.0 3.5 DM-29 9337 3.0 DM+27 2055 2.5 Denebola L829-26 2.0 1.5 L901-10 1.0 DM-9 3413 0.5 DM-33 8130 0.0 L1405-9 DM+43 2180 -0.5 -1.0 Alpha Crucis DM-45 7581 -1.5 -2.0 Delta -2.5 DM+49 2126 -3.0 -3.5 DM+26 2329 -4.0 DM+29 2279 DM+1 2684 -4.5 Wolf 414 -5.0 DM+32 2241 -5.5 AC+13 1308-2 DM+9 2636 -6.0 DM+8 2599 Wolf 433 -6.5 AC+10 95-26 DM-17 3632 -7.0 DM+34 2333 -7.5 DM+16 2404 -8.0 L399-68 DM+40 2570 -8.5 -9.0 -9.5 Wolf 457 DM+13 2618 -10.0 DM-39 7893 -10.5 Ross 974 AC+56 45927 DM-51 7244 -11.0 DM+32 2274 DM+36 2322 -11.5 DM+25 2568 -12.0 -12.5 -13.0 DM+10 2531 -13.5 -14.0 DM+50 1979 Ross 486 -14.5 DM+21 2486 -15.0 -15.5 -16.0 Rho Canum Venaticorum -16.5 DM+29 2405 DM+48 2138 -17.0 DM-21 3660 42 Alpha Comae Berenices Iota Centauri -17.5 DM-27 9225 -18.0 AC+33 38922 2300AD Star Map based on Near Star List III Human Homeworld / Colony Homeworld -60 to -30 ly A Blue Human Outpost Trade Route - Chinese Arm -30 to -10 ly F White Kafer Homeworld / Colony Major Trade Route - Chinese Arm Other Route - Chinese Trade Route - American Arm -10 to +10 ly G Yellow Kafer Outpost Major Trade Route - American Arm Other Route - America Trade Route- French Arm +10 to +30 ly K Orange Ylii Homeworld / Colony Major Trade Route- French Arm Other Route- French A M Red Alien Homeworld / Colony +30 to +60 ly -60.0 -59.5 -59.0 -58.5 -58.0 -57.5 -57.0 -56.5 -56.0 -55.5 -55.0 -54.5 -54.0 -53.5 -53.0 -52.5 -52.0 -51.5 -51.0 -50.5 -50.0 -49.5 -49.0 -48.5 -48.0 -47.5 -47.0 -46.5 -46.0 -45.5 -45.0 -44.5 -44.0 -43.5 -43.0 -42.5 -42.0 -41.5 -41.0 -40.5 -40.0 -39.5 -39.0 -38.5 -38.0 -37.5 -37.0 -36.5 -36.0 -35.5 -18.5 -19.0 AC+18 1204-9 -19.5 DM-3 3508 -20.0 DM-15 3668 -20.5 Ross 476 L1194-26 DM+51 1859 -21.0 DM-7 3632 -21.5 DM+14 2621 -22.0 Tau Bootis -22.5 DM+0 3090 -23.0 DM-23 11329 -23.5 DM+30 2428 DM-7 3646 Ross 845 -24.0 DM-32 9603 Wolf 5 -24.5 DM+13 2721 -25.0 -25.5 DM+11 2625 -26.0 DM-34 9223 DM+24 2733 B -26.5 DM-44 9181 -27.0 -27.5 DM+39 2375 DM+46 1951 -28.0 -28.5 -29.0 DM-6 3964 -29.5 DM-45 9206 DM+23 2640 -30.0 DM-30 11195 DM-7 3856 -30.5 DM+1 2920 Sigma Bootis -31.0 -31.5 DM-39 8857 HC+11 9580 He'ah -32.0 DM-5 3853 -32.5 DM+36 2500 -33.0 -33.5 DM-26 10158 -34.0 -34.5 DM-4 3665 DM+34 2541 -35.0 DM+39 2801 -35.5 Chien 112 Da've'ah -36.0 DM+27 2411 -36.5 DM-25 10271 DM-43 9510 -37.0 BK+10 1245 K!lik'nu'ah -37.5 -38.0 DM-45 9610 DM+25 2873 -38.5 -39.0 -39.5 -40.0 -40.5 Chien -41.0 AC+31 32985 -41.5 -42.0 -42.5 -43.0 Phi Virginis HC+13 232 Ch*Ch*'ah G167-15 -43.5 DM-25 10553 -44.0 BK+15 3434 Kan'ah'ah 2300AD Star Map based on Near Star List III Human Homeworld / Colony Homeworld -60 to -30 ly A Blue Human Outpost Trade Route - Chinese Arm -30 to -10 ly F White Kafer Homeworld / Colony Major Trade Route - Chinese Arm Other Route - Chinese Trade Route - American Arm -10 to +10 ly G Yellow Kafer Outpost Major Trade Route - American Arm Other Route - America Trade Route- French Arm +10 to +30 ly K Orange Ylii Homeworld / Colony Major Trade Route- French Arm Other Route- French A M Red Alien Homeworld / Colony +30 to +60 ly -60.0 -59.5 -59.0 -58.5 -58.0 -57.5 -57.0 -56.5 -56.0 -55.5 -55.0 -54.5 -54.0 -53.5 -53.0 -52.5 -52.0 -51.5 -51.0 -50.5 -50.0 -49.5 -49.0 -48.5 -48.0 -47.5 -47.0 -46.5 -46.0 -45.5 -45.0 -44.5 -44.0 -43.5 -43.0 -42.5 -42.0 -41.5 -41.0 -40.5 -40.0 -39.5 -39.0 -38.5 -38.0 -37.5 -37.0 -36.5 -36.0 -35.5 AC+18 1310-8 DM-4 3873 -44.5 -45.0 -45.5 HC+18 9881 Na Ve'ah -46.0 DM+6 2986 -46.5 -47.0 -47.5 DM-24 11928 -48.0 Chi -48.5 -49.0 -49.5 -50.0 -50.5 DM-15 4042 DM-23 12458 -51.0 SS+28 9357 Ka'rra'ah DM-0 2941 -51.5 HC+31 8213 Ya'la'chi'ah -52.0 -52.5 -53.0 -53.5 -54.0 DM+3 3032 -54.5 Alpha Serpentis -55.0 -55.5 -56.0 -56.5 -57.0 -57.5 -58.0 Psi Serpentis -58.5 -59.0 -59.5 -60.0 -60.0 -59.5 -59.0 -58.5 -58.0 -57.5 -57.0 -56.5 -56.0 -55.5 -55.0 -54.5 -54.0 -53.5 -53.0 -52.5 -52.0 -51.5 -51.0 -50.5 -50.0 -49.5 -49.0 -48.5 -48.0 -47.5 -47.0 -46.5 -46.0 -45.5 -45.0 -44.5 -44.0 -43.5 -43.0 -42.5 -42.0 -41.5 -41.0 -40.5 -40.0 -39.5 -39.0 -38.5 -38.0 -37.5 -37.0 -36.5 -36.0 -35.5 Notes for this Map: This map shows all stars listed in the Near Star List III that have unique coordinates.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • The Exoplanet-Host Star Ι Horologii: an Evaporated Member of the Primordial Hyades Cluster
    A&A 482, L5–L8 (2008) Astronomy DOI: 10.1051/0004-6361:20079342 & c ESO 2008 Astrophysics Letter to the Editor The exoplanet-host star ι Horologii: an evaporated member of the primordial Hyades cluster S. Vauclair1,M.Laymand1, F. Bouchy2, G. Vauclair1,A.HuiBonHoa1, S. Charpinet1, and M. Bazot3 1 Laboratoire d’Astrophysique de Toulouse-Tarbes, CNRS, Université de Toulouse, 14 Av. Ed. Belin, 31400 Toulouse, France e-mail: [email protected] 2 Institut d’Astrophysique de Paris, 75014 Paris, France 3 Centro de Astrophysica da Universidade do Porto, Porto, Portugal Received 30 December 2007 / Accepted 4 March 2008 ABSTRACT Aims. We show that the exoplanet-host star iota Horologii, alias HD 17051, which belongs to the so-called Hyades stream, was formed within the primordial Hyades stellar cluster and has evaporated towards its present location, 40 pc away. Methods. This result has been obtained unambiguously by studying the acoustic oscillations of this star, using the HARPS spectrom- eter in La Silla Observatory (ESO, Chili). Results. Besides the fact that ι Hor belongs to the Hyades stream, we give evidence that it has the same metallicity, helium abun- dance, and age as the other stars of the Hyades cluster. They were formed together, at the same time, in the same primordial cloud. Conclusions. This result has strong implications for theories of stellar formation. It also indicates that the observed overmetallicity of this exoplanet-host star, about twice that of the Sun, is original and not caused by planet accretion during the formation of the planetary system. Key words.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • AD ASTRA Pelo Preço Atual Devea Faze-Lo Logo, Pois Este Deverá Sofrer Majoraçáo Apáa L Do Setembro
    12 JULL T I í* # BOLETIM INFORMATIVO DA SOCIEDADE ASTRONÔMICA RIOGRANDENSE FUNDADA EM 16/09/79 ERRATA 0 editor pede desculpas pelos seguintes erros por ele cometidosv e que escaparam do revisão; pág._______ llmha____________ errado_________________cemroto__________ 1 33 CollsÕes de Cono as ColisÕes e Modelos Modelaram 12 título Planetários os Planetas 11 3 (e - 1) (e2 - i) 11 28 >0 E > 0 33 tabela 3 0** Oiih32nln 3^ diagrama saiu girado de 90° para a direita C í üL_J o mes passado a SARG procedeu una refomulaçao dos Estatutos desta Sociedade^ refomulaçao que já urgia, uma vez que o Ej3 U\i_J tatuto antigo nao se adequava mais à realidade da SARG. Cota cr^Jo crescimento da Sociedade, era necessário um Estatuto mais dinâmico, voltado aos novos interesses desta.^Por motivos, alguns normais e outros nem tanto, seguiu-se a eleição de uma nova Direto­ ria Executiva e de um novo Conselho^Fiscal, assim como uma reorgani^ zaçáo das coordenadorias das Comissões de Estudo (já existentes e novas) e Departamentos (recém-criados). Os novos titulares dos diver sos crgos estão relacionados á página 38. Todos que quiserem assinar o AD ASTRA pelo preço atual devea faze-lo logo, pois este deverá sofrer majoraçáo apáa l_do setembro. É conveniente lembrar que os artigos assinados são de respon sabilidade de seus autores, não necessitando estar em completo acor do cou o pensamento geral da Sociedade, que pode discordar de um ou outro ponto dos mesmos. Esta observação, no entanto, não possui re­ lação necessária com qualquer dos artigos publicados neste boletim, sendo somente um lembrete.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Principal Facts of the Earth's Magnetism and Methods Of
    • * Class Book « % 9 DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY E. LESTER JONES, Superintendent PRINCIPAL FACTS OF THE EARTH’S MAGNETISM AND METHODS OF DETERMIN¬ ING THE TRUE MERIDIAN AND THE MAGNETIC DECLINATION [Reprinted from United States Magnetic Declination Tables and Isogonic Charts for 1902] [Reprinted from edition of 1914] WASHINGTON GOVERNMENT PRINTING OFFICE 1919 ( COAST AND GEODETIC SURVEY OFFICE. DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY »» E. LESTER JONES, Superintendent PRINCIPAL FACTS OF THE EARTH’S MAGNETISM AND METHODS OF DETERMIN¬ ING THE TRUE MERIDIAN AND THE MAGNETIC DECLINATION [Reprinted from United States Magnetic Declination Tables and Isogonic Charts for 1902 ] i [ Reprinted from edition of 1914] WASHINGTON GOVERNMENT PRINTING OFFICE 4 n; «f B. AUG 29 1913 ft • • * C c J 4 CONTENTS. Page. Preface. 7 Definitions. 9 Principal Facts Relating to the Earth’s Magnetism. Early History of the Compass. Discovery of the Lodestone. n Discovery of Polarity of Lodestone. iz Introduction of the Compass..... 15 Improvement of the Compass by Petrius Peregrinus. 16 Improvement of the Compass by Flavio Gioja. 20 Derivation of the word Compass. 21 Voyages of Discovery. 21 Compass Charts. 21 Birth of the Science of Terrestrial Magnetism. Discovery of the Magnetic Declination at Sea. 22 Discovery of the Magnetic Declination on Land. 25 Early Methods for Determining the Magnetic Declination and the Earliest Values on Land. 26 Discovery of the Magnetic Inclination. 30 The Earth, a Great Magnet. Gilbert’s “ De Magnete ”.'. 34 The Variations of the Earth’s Magnetism. Discovery of Secular Change of Magnetic Declination. 38 Characteristics of the Secular Change.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Superflares and Giant Planets
    Superflares and Giant Planets From time to time, a few sunlike stars produce gargantuan outbursts. Large planets in tight orbits might account for these eruptions Eric P. Rubenstein nvision a pale blue planet, not un- bushes to burst into flames. Nor will the lar flares, which typically last a fraction Elike the Earth, orbiting a yellow star surface of the planet feel the blast of ul- of an hour and release their energy in a in some distant corner of the Galaxy. traviolet light and x rays, which will be combination of charged particles, ul- This exercise need not challenge the absorbed high in the atmosphere. But traviolet light and x rays. Thankfully, imagination. After all, astronomers the more energetic component of these this radiation does not reach danger- have now uncovered some 50 “extra- x rays and the charged particles that fol- ous levels at the surface of the Earth: solar” planets (albeit giant ones). Now low them are going to create havoc The terrestrial magnetic field easily de- suppose for a moment something less when they strike air molecules and trig- flects the charged particles, the upper likely: that this planet teems with life ger the production of nitrogen oxides, atmosphere screens out the x rays, and and is, perhaps, populated by intelli- which rapidly destroy ozone. the stratospheric ozone layer absorbs gent beings, ones who enjoy looking So in the space of a few days the pro- most of the ultraviolet light. So solar up at the sky from time to time. tective blanket of ozone around this flares, even the largest ones, normally During the day, these creatures planet will largely disintegrate, allow- pass uneventfully.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]