Similarities of Retinoblastoma Function Between Plants and Animals, from Developmental Processes to Epigenetic Regulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
Microglia Emerge from Erythromyeloid Precursors Via Pu.1- and Irf8-Dependent Pathways
ART ic LE S Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways Katrin Kierdorf1,2, Daniel Erny1, Tobias Goldmann1, Victor Sander1, Christian Schulz3,4, Elisa Gomez Perdiguero3,4, Peter Wieghofer1,2, Annette Heinrich5, Pia Riemke6, Christoph Hölscher7,8, Dominik N Müller9, Bruno Luckow10, Thomas Brocker11, Katharina Debowski12, Günter Fritz1, Ghislain Opdenakker13, Andreas Diefenbach14, Knut Biber5,15, Mathias Heikenwalder16, Frederic Geissmann3,4, Frank Rosenbauer6 & Marco Prinz1,17 Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit+ erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. + lo − + − + These precursors developed into CD45 c-kit CX3CR1 immature (A1) cells and matured into CD45 c-kit CX3CR1 (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia. Microglia are the tissue macrophages of the brain and scavenge dying have the ability to give rise to microglia and macrophages in vitro cells, pathogens and molecules using pattern recognition receptors and in vivo under defined conditions. -
G2 Phase Cell Cycle Regulation by E2F4 Following Genotoxic Stress
G2 Phase Cell Cycle Regulation by E2F4 Following Genotoxic Stress by MEREDITH ELLEN CROSBY Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Thesis Advisor: Dr. Alex Almasan Department of Environmental Health Sciences CASE WESTERN RESERVE UNIVERSITY May, 2006 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS TABLE OF CONTENTS………………………………………………………………….1 LIST OF FIGURES……………………………………………………………………….5 LIST OF TABLES………………………………………………………………………...7 ACKNOWLEDGEMENTS……………………………………………………………….8 LIST OF ABBREVIATIONS……………………………………………………………10 ABSTRACT……………………………………………………………………………...15 CHAPTER 1. INTRODUCTION 1.1. CELL CYCLE REGULATION: HISTORICAL OVERVIEW………………...17 1.2. THE E2F FAMILY OF TRANSCRIPTION FACTORS……………………….22 1.3. E2F AND CELL CYCLE CONTROL 1.3.1. G0/G1 Phase Transition………………………………………………….28 1.3.2. S Phase…………………………………………………………………...28 1.3.3. G2/M Phase Transition…………………………………………………..30 1.4. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Generation and Characterization of a Gene Trap and Conditional Lin9
The Role of LIN9 in Mouse Development Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Nina Reichert aus Marburg an der Lahn Würzburg, 2008 Eingereicht am: ............................................................................................ Mitglieder der Promotionskommission: Vorsitzender: 1. Gutachter: Prof. Dr. Stefan Gaubatz 2. Gutachter: Prof. Dr. Thomas Brand Tag des Promotionskolloquiums: ............................................................................................ Doktorurkunde ausgehändigt am: ............................................................................................ Für meine Familie & Oliver Content I 1 INTRODUCTION ........................................................................................................................1 1.1 Cell Cycle & its Regulators ...................................................................................................1 1.1.1 Mammalian Cell Cycle .............................................................................................................. 1 1.1.2 Cyclins & CDKs ........................................................................................................................ 2 1.1.3 pRB/E2F Pathway .................................................................................................................... 4 1.2 pRB/E2F Complexes in Model Organisms ...........................................................................5 -
Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). -
The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. -
And Represses TNF Gene Expression Activating Transcription Factor-2
Histone Deacetylase 3, a Class I Histone Deacetylase, Suppresses MAPK11-Mediated Activating Transcription Factor-2 Activation and Represses TNF Gene Expression This information is current as of September 25, 2021. Ulrich Mahlknecht, Jutta Will, Audrey Varin, Dieter Hoelzer and Georges Herbein J Immunol 2004; 173:3979-3990; ; doi: 10.4049/jimmunol.173.6.3979 http://www.jimmunol.org/content/173/6/3979 Downloaded from References This article cites 45 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/173/6/3979.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Histone Deacetylase 3, a Class I Histone Deacetylase, Suppresses MAPK11-Mediated Activating Transcription Factor-2 Activation and Represses TNF Gene Expression1 Ulrich Mahlknecht,2* Jutta Will,* Audrey Varin,† Dieter Hoelzer,* and Georges Herbein2† During inflammatory events, the induction of immediate-early genes, such as TNF-␣, is regulated by signaling cascades including the JAK/STAT, NF-B, and the p38 MAPK pathways, which result in phosphorylation-dependent activation of transcription factors. -
Targeting Endothelial Kruppel-Like Factor 2 (KLF2) in Arteriovenous
Targeting Endothelial Krüppel-like Factor 2 (KLF2) in Arteriovenous Fistula Maturation Failure A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Ph.D.) in the Biomedical Engineering Program Department of Biomedical Engineering College of Engineering and Applied Science 2018 by Keith Louis Saum B.S., Wright State University, 2012 Dissertation Committee: Albert Phillip Owens III, Ph.D. (Committee Chair) Begona Campos-Naciff, Ph.D Christy Holland, Ph.D. Daria Narmoneva, Ph.D. Prabir Roy-Chaudhury, M.D., Ph.D Charuhas Thakar, M.D. Abstract The arteriovenous fistula (AVF) is the preferred form of vascular access for hemodialysis. However, 25-60% of AVFs fail to mature to a state suitable for clinical use, resulting in significant morbidity, mortality, and cost for end-stage renal disease (ESRD) patients. AVF maturation failure is recognized to result from changes in local hemodynamics following fistula creation which lead to venous stenosis and thrombosis. In particular, abnormal wall shear stress (WSS) is thought to be a key stimulus which alters endothelial function and promotes AVF failure. In recent years, the transcription factor Krüppel-like factor-2 (KLF2) has emerged as a key regulator of endothelial function, and reduced KLF2 expression has been shown to correlate with disturbed WSS and AVF failure. Given KLF2’s importance in regulating endothelial function, the objective of this dissertation was to investigate how KLF2 expression is regulated by the hemodynamic and uremic stimuli within AVFs and determine if loss of endothelial KLF2 is responsible for impaired endothelial function. -
Animal Cells Anterior Epidermis Anterior Epidermis A-Neural
Anterior Epidermis Anterior Epidermis KH2012 TF common name Log2FC -Log(pvalue) Log2FC -Log(pvalue) DE in Imai Matched PWM PWM Cluster KH2012 TF common name Log2FC -Log(pvalue) Log2FC -Log(pvalue) DE in Imai Matched PWM PWM Cluster gene model Sibling Cluster Sibling Cluster Parent Cluster Parent Cluster z-score z-score gene model Sibling Cluster Sibling Cluster Parent Cluster Parent Cluster z-score z-score KH2012:KH.C11.485 Irx-B 1.0982 127.5106 0.9210 342.5323 Yes No PWM Hits No PWM Hits KH2012:KH.C1.159 E(spl)/hairy-a 1.3445 65.6302 0.6908 14.3413 Not Analyzed -15.2125 No PWM Hits KH2012:KH.L39.1 FoxH-b 0.6677 45.8148 1.1074 185.2909 No -3.3335 5.2695 KH2012:KH.C1.99 SoxB1 1.2482 73.2413 0.3331 9.3534 Not Analyzed No PWM match No PWM match KH2012:KH.C1.159 E(spl)/hairy-a 0.6233 47.2239 0.4339 77.0192 Yes -10.496 No PWM Hits KH2012:KH.C11.485 Irx-B 1.2355 72.8859 0.1608 0.0137 Not Analyzed No PWM Hits No PWM Hits KH2012:KH.C7.43 AP-2-like2 0.4991 31.7939 0.4775 68.8091 Yes 10.551 21.586 KH2012:KH.C1.1016 GCNF 0.8556 36.2030 1.3828 100.1236 Not Analyzed No PWM match No PWM match KH2012:KH.C1.99 SoxB1 0.4913 33.7808 0.3406 39.0890 No No PWM match No PWM match KH2012:KH.L108.4 CREB/ATF-a 0.6859 37.8207 0.3453 15.8154 Not Analyzed 6.405 8.6245 KH2012:KH.C7.157 Emc 0.4139 19.2080 1.1001 173.3024 Yes No PWM match No PWM match KH2012:KH.S164.12 SoxB2 0.6194 22.8414 0.6433 35.7335 Not Analyzed 8.722 17.405 KH2012:KH.C4.366 ERF2 -0.4878 -32.3767 -0.1770 -0.2316 No -10.324 9.7885 KH2012:KH.L4.17 Zinc Finger (C2H2)-18 0.6166 24.8925 0.2386 5.3130 -
P53 Regulates Myogenesis by Triggering the Differentiation
CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central p53 Regulates Myogenesis by Triggering the Differentiation Activity of pRb Alessandro Porrello, Maria Antonietta Cerone, Sabrina Coen, Aymone Gurtner, Giulia Fontemaggi, Letizia Cimino, Giulia Piaggio, Ada Sacchi, and Silvia Soddu Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, Center for Experimental Research, 00158 Rome, Italy Abstract. The p53 oncosuppressor protein regulates mary myoblasts, pRb is hypophosphorylated and prolif- cell cycle checkpoints and apoptosis, but increasing evi- eration stops. However, these cells do not upregulate dence also indicates its involvement in differentiation pRb and have reduced MyoD activity. The transduction and development. We had previously demonstrated of exogenous TP53 or Rb genes in p53-defective myo- that in the presence of differentiation-promoting stim- blasts rescues MyoD activity and differentiation poten- uli, p53-defective myoblasts exit from the cell cycle but tial. Additionally, in vivo studies on the Rb promoter do not differentiate into myocytes and myotubes. To demonstrate that p53 regulates the Rb gene expression identify the pathways through which p53 contributes at transcriptional level through a p53-binding site. to skeletal muscle differentiation, we have analyzed Therefore, here we show that p53 regulates myoblast the expression of a series of genes regulated during differentiation by means of pRb without affecting its myogenesis in parental and dominant–negative p53 cell cycle–related functions. (dnp53)-expressing C2C12 myoblasts. We found that in dnp53-expressing C2C12 cells, as well as in p53Ϫ/Ϫ pri- Key words: p53 • Rb • MyoD • differentiation • muscle Introduction The differentiation of skeletal myoblasts is characterized review, see Wright, 1992).