Targeting Endothelial Kruppel-Like Factor 2 (KLF2) in Arteriovenous

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Endothelial Kruppel-Like Factor 2 (KLF2) in Arteriovenous Targeting Endothelial Krüppel-like Factor 2 (KLF2) in Arteriovenous Fistula Maturation Failure A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Ph.D.) in the Biomedical Engineering Program Department of Biomedical Engineering College of Engineering and Applied Science 2018 by Keith Louis Saum B.S., Wright State University, 2012 Dissertation Committee: Albert Phillip Owens III, Ph.D. (Committee Chair) Begona Campos-Naciff, Ph.D Christy Holland, Ph.D. Daria Narmoneva, Ph.D. Prabir Roy-Chaudhury, M.D., Ph.D Charuhas Thakar, M.D. Abstract The arteriovenous fistula (AVF) is the preferred form of vascular access for hemodialysis. However, 25-60% of AVFs fail to mature to a state suitable for clinical use, resulting in significant morbidity, mortality, and cost for end-stage renal disease (ESRD) patients. AVF maturation failure is recognized to result from changes in local hemodynamics following fistula creation which lead to venous stenosis and thrombosis. In particular, abnormal wall shear stress (WSS) is thought to be a key stimulus which alters endothelial function and promotes AVF failure. In recent years, the transcription factor Krüppel-like factor-2 (KLF2) has emerged as a key regulator of endothelial function, and reduced KLF2 expression has been shown to correlate with disturbed WSS and AVF failure. Given KLF2’s importance in regulating endothelial function, the objective of this dissertation was to investigate how KLF2 expression is regulated by the hemodynamic and uremic stimuli within AVFs and determine if loss of endothelial KLF2 is responsible for impaired endothelial function. We tested the hypothesis that suppression of endothelial KLF2 by disturbed WSS or uremic solutes promotes endothelial dysfunction, and therapies which target these mechanisms could be used to induce KLF2 expression and improve AVF maturation. We first investigated the impact of abnormal WSS and the uremic milieu on KLF2 expression in cultured endothelial cells. Utilizing serum from pigs with chronic renal insufficiency, we demonstrated that endothelial KLF2 was suppressed following exposure to uremic serum. Through a series of experiments, this response was linked to the action of advanced glycation end-products (AGEs) and other protein- bound solutes which accumulated in ESRD. However, further studies demonstrated that the application of arterial WSS attenuated the effect of uremic serum on endothelial KLF2 expression. i We examined if loss of KLF2 was associated with changes in endothelial function in vivo. Using an endothelial-specific KLF2 deficient mouse, we observed impaired flow-mediated dilation (FMD) in uremic mice deficient in endothelial KLF2. Mechanistic studies revealed that impaired FMD in endothelial-deficient KLF2 mice was due to reduced nitric oxide availability. Furthermore, suppression of KLF2 was found to increase reactive oxygen species and leukocyte adhesion in cultured endothelial cells following exposure to uremic serum. Together, these observations suggested that uremia may exacerbate AVF failure in regions of abnormal WSS by synergistically suppressing endothelial KLF2. Finally, we attempted to translate these findings into a clinical therapy to promote KLF2 expression and improve AVF maturation. Utilizing computational fluid dynamics and microfabrication techniques, we designed, fabricated, and tested an endovascular implant capable of correcting abnormal WSS within an AVF. Computational and benchtop studies demonstrated the implant restored a physiological WSS profile in the draining vein. Implantation into a porcine AVF model resulted in increased KLF2 expression within the AVF vein at 28 days, but device thrombosis was observed. Further work is needed to optimize this therapeutic approach and access its impact on AVF outcomes. Overall, these data suggest loss of KLF2 in ESRD may promote endothelial dysfunction and subsequent AVF maturation failure. These findings may be beneficial for future studies targeting endothelial KLF2 during AVF maturation. ii © 2018 Keith Louis Saum ALL RIGHTS RESERVED iii Acknowledgements I would like to express my deep appreciation and gratitude to the many individuals who have helped and encouraged me on my path to becoming a physician-scientist. This dissertation would not have been possible without the help and support from all my current and former teachers, mentors, collaborators, and lab members. The following individuals deserve special acknowledgement for their contributions to my research, mentorship during my training, and constant support as I navigated the trials and tribulations of graduate school. First and foremost, I would like to thank my two primary research advisors, Dr. Prabir Roy-Chaudhury and Dr. Phillip Owens. Your willingness to take me into your laboratories as an MD/PhD student, introduce me to vascular biology research, and jointly mentor me throughout the course of my dissertation has been critical to my development as a scientist. Although different in mentoring styles, together you have guided me through the scientific process and honed my critical thinking skills. I enjoyed working with both of you and look forward to continued collaboration in the future. Second, I would like to thank Dr. Begona Campos-Naciff for her continual mentorship, knowledge, and support throughout my graduate studies. Without your motivation and encouragement I would not have applied to the Medical Scientist Training Program (MSTP) program following my second year of medical school. You saw the budding scientist in me and have graciously taken your time to teach me many lessons in science and life outside of the laboratory. Most importantly, you have constantly challenged me to reach my full potential and encouraged me to persevere in the face of hardship. I would also like to thank Dr. Christy Holland, Dr. Daria Narmoneva, and Dr. Charuhas Thakar for taking the time to be on my committee and provide feedback on my work. I benefitted iv greatly from discussions with them during the course of my research. Dr. Thakar has not only supported my interest in nephrology but has also helped ensure my research remains clinically relevant. Dr. Christy Holland has been a valuable resource for expertise into the areas of hemodynamics and ultrasound. Dr. Daria Narmoneva has provided keen insights on the biological impacts of my proposed work. During my time as a graduate student, I have been fortunate to work side-by-side in laboratories with some of the kindest, smartest, and most helpful people I have ever met. Dr. Diego Celdran Bonafonte has not only provided me with invaluable surgical expertise and experimental assistance, but also motivation in stressful times. Thank you to Shannon Jones, Adrien Mann, Nathan Robbins, Kelsey Conrad, and Hannah Russel for your daily help, discussions, and general camaraderie to break up the drudgery and dissipate stresses of graduate school. Many of the studies presented in this dissertation could not have been completed without the help of a multidisciplinary team of researchers. In addition to my fellow lab members mentioned above, I am indebted to the many collaborators that I have been privileged to work with and learn from over the past four years, including: Dr. Vesselin Shannov from the Department of Chemical and Materials Engineering; Dr. Liran Oren from the Department of Otolaryngology-Head and Neck Surgery; and Dr. Jack Rubinstein and Dr. Michael Tranter in the Division of Cardiovascular Health and Disease. My research successes would not have been possible without the committed support of the University of Cincinnati Medical Scientist Training Program (MSTP). I would also like to thank Dr. Gurjit Khurana Hershey, Dr. George Deepe, Dr. Kathryn Wikenheiser-Brokamp, Andrea DeSantis, and Amy Flanary for your dedication to the UC MSTP and for your tireless v efforts to create a nurturing environment that fosters both scientific and professional development. Lastly, thank you to my wonderful family and friends who have supported me throughout the ups and downs of my research and graduate education. My parents, Dan and Jeanie; my brothers, Scott and Craig; and my sister Jamie have provided endless love and encouragement. Most importantly, thank you to my wife Alyssa who has been a steady source of love and encouragement as I completed my graduate studies. Your unwavering support and patience has given me the strength and motivation to work hard and pursue my passions. I love you all very much. vi Organization of Dissertation This dissertation is composed of seven chapters and includes: an introduction to the field of hemodialysis vascular access and the clinical problem of arteriovenous fistula (AVF) maturation failure followed by a review of the relevant background literature (Chapter 1); a focused discussion of Krüppel-like Factor 2 and it role in endothelial cell function (Chapter 2); a description of the overall research approach and specific objectives of the dissertation (Chapter 3); a summary of the experimental results in the form of three scientific manuscripts (Chapters 4- 6); and a discussion of the major conclusions, limitations, and future directions of this work (Chapter 7). Chapter 1 begins by providing background about the burden of dialysis vascular access in end-stage renal disease (ESRD) and the pathogenesis of AVF maturation failure. The function and role of the endothelium in this problem is also reviewed, as is
Recommended publications
  • Minimally Invasive Superficial Femoral Artery Endarterectomy: Early Experience with a Modified Technique
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Eur J Vasc Endovasc Surg 16, 254-258 (1998) ENDOVASCULAR AND SURGICAL TECHNIQUES Minimally Invasive Superficial Femoral Artery Endarterectomy: Early Experience with a Modified Technique M. S. Whiteley 1, T. R. Magee 1, E. P. H. Torrie 2 and R. B. Galland* Department of ~Surgery and 2Radiology, Royal Berkshire Hospital, London Road, Reading, U.K. Objectives: To describe our experience of a modified technique for carrying out remote endarterectomy for superficial femoral artery occlusive disease. Methods: A 4-French arterial dilator is inserted using a Smart needle into the popliteal artery below the occlusion. A remote endarterectomy is carried out through an arteriotomy in the proximal superficial femoral artery. The atheroma is cut distal to the lower extent of disease using a Moll ring cutter. The lower flap of atheroma is secured with an intraluminaI stent inserted from the arteriotomy in the superficial femoral artery. The arteriotomy is extended into the common femoral artery and closed with a vein patch. Results: The procedure was completed in 21 of 26 limbs. In 18 cases the superficial femoral artery remained patent at 30 days. Of the 21 cases all but four stayed in hospital for one night. A successful femoropopliteal bypass was carried out in the five patients in whom the procedure was not completed. Conclusion: Insertion of the dilator into the popliteal artery distal to the occlusion before carrying out the remote endarterectomy has two advantages. Firstly, the stent insertion is carried out in the correct plane and prevents dissection of the distal cut atheroma when attempting to pass the guidewire from above.
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • And Represses TNF Gene Expression Activating Transcription Factor-2
    Histone Deacetylase 3, a Class I Histone Deacetylase, Suppresses MAPK11-Mediated Activating Transcription Factor-2 Activation and Represses TNF Gene Expression This information is current as of September 25, 2021. Ulrich Mahlknecht, Jutta Will, Audrey Varin, Dieter Hoelzer and Georges Herbein J Immunol 2004; 173:3979-3990; ; doi: 10.4049/jimmunol.173.6.3979 http://www.jimmunol.org/content/173/6/3979 Downloaded from References This article cites 45 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/173/6/3979.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Histone Deacetylase 3, a Class I Histone Deacetylase, Suppresses MAPK11-Mediated Activating Transcription Factor-2 Activation and Represses TNF Gene Expression1 Ulrich Mahlknecht,2* Jutta Will,* Audrey Varin,† Dieter Hoelzer,* and Georges Herbein2† During inflammatory events, the induction of immediate-early genes, such as TNF-␣, is regulated by signaling cascades including the JAK/STAT, NF-␬B, and the p38 MAPK pathways, which result in phosphorylation-dependent activation of transcription factors.
    [Show full text]
  • Global Mef2 Target Gene Analysis in Skeletal and Cardiac Muscle
    GLOBAL MEF2 TARGET GENE ANALYSIS IN SKELETAL AND CARDIAC MUSCLE STEPHANIE ELIZABETH WALES A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO FEBRUARY 2016 © Stephanie Wales 2016 ABSTRACT A loss of muscle mass or function occurs in many genetic and acquired pathologies such as heart disease, sarcopenia and cachexia which are predominantly found among the rapidly increasing elderly population. Developing effective treatments relies on understanding the genetic networks that control these disease pathways. Transcription factors occupy an essential position as regulators of gene expression. Myocyte enhancer factor 2 (MEF2) is an important transcription factor in striated muscle development in the embryo, skeletal muscle maintenance in the adult and cardiomyocyte survival and hypertrophy in the progression to heart failure. We sought to identify common MEF2 target genes in these two types of striated muscles using chromatin immunoprecipitation and next generation sequencing (ChIP-seq) and transcriptome profiling (RNA-seq). Using a cell culture model of skeletal muscle (C2C12) and primary cardiomyocytes we found 294 common MEF2A binding sites within both cell types. Individually MEF2A was recruited to approximately 2700 and 1600 DNA sequences in skeletal and cardiac muscle, respectively. Two genes were chosen for further study: DUSP6 and Hspb7. DUSP6, an ERK1/2 specific phosphatase, was negatively regulated by MEF2 in a p38MAPK dependent manner in striated muscle. Furthermore siRNA mediated gene silencing showed that MEF2D in particular was responsible for repressing DUSP6 during C2C12 myoblast differentiation. Using a p38 pharmacological inhibitor (SB 203580) we observed that MEF2D must be phosphorylated by p38 to repress DUSP6.
    [Show full text]
  • Transpulmonary Closure of Giant Persistent Ductus Arteriosus Under Cardiopulmonary Bypass and Normothermic Cardioplegia
    Published online: 2019-11-25 THIEME 36 TranspulmonaryPoint of Technique Closure of Giant Persistent Ductus Arteriosus Chowdhury et al. Transpulmonary Closure of Giant Persistent Ductus Arteriosus under Cardiopulmonary Bypass and Normothermic Cardioplegia Ujjwal K. Chowdhury1 Sukhjeet Singh1 Niwin George1 Lakshmi Kumari Sankhyan1 Poonam Malhotra Kapoor2 1Department of Cardiothoracic and Vascular Surgery, All India Address for correspondence Ujjwal K. Chowdhury, MCh, Institute of Medical Sciences, New Delhi, India Department of Cardiothoracic and Vascular Surgery, All 2Department of Cardiac Anaesthesia, All India Institute of Medical India Institute of Medical Sciences, New Delhi 110029, India Sciences, New Delhi, India (e-mail: [email protected]). J Card Crit Care TSS 2020;3:36–38 Abstract A 25-year-old female patient with a giant, short, calcified, hypertensive, window duc- tus arteriosus underwent successful closure via transpulmonary approach under nor- Keywords mothermic cardiopulmonary bypass without circulatory arrest using a Foley catheter ► giant ductus for temporary occlusion. arteriosus ► adult ductus ► cardiopulmonary bypass ► transpulmonary closure ► calcified ductus Introduction chylothorax, or recanalization. Postoperative computerized tomographic angiography revealed complete ductal inter‑ Despite 80 years of experience, correction of persistent duc‑ ruption with no residual shunt or ductal aneurysm (►Fig. 3). tus arteriosus remains a surgical challenge in the subset of 1. Primary median sternotomy is performed. patients
    [Show full text]
  • Cortical Foxp2 Supports Behavioral Flexibility and Developmental Dopamine D1 Receptor Expression
    bioRxiv preprint doi: https://doi.org/10.1101/624973; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cortical Foxp2 supports behavioral flexibility and developmental dopamine D1 receptor expression Marissa Co, Stephanie L. Hickey, Ashwinikumar Kulkarni, Matthew Harper, Genevieve Konopka* Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA *Correspondence: [email protected] Contact information Genevieve Konopka, Ph.D. Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., ND4.300, Dallas, TX 75390-9111 TEL: 214-648-5135, FAX: 214-648-1801, Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/624973; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract FoxP2 encodes a forkhead box transcription factor required for the development of neural circuits underlying language, vocalization, and motor-skill learning. Human genetic studies have associated FOXP2 variation with neurodevelopmental disorders (NDDs), and within the cortex, it is coexpressed and interacts with other NDD-associated transcription factors. Cortical Foxp2 is required in mice for proper social interactions, but its role in other NDD-relevant behaviors and molecular pathways is unknown.
    [Show full text]
  • Foxp2 Loss of Function Increases Striatal Direct Pathway Inhibition Via Increased GABA Release
    Brain Structure and Function https://doi.org/10.1007/s00429-018-1746-6 ORIGINAL ARTICLE Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release Jon‑Ruben van Rhijn1,2,3 · Simon E. Fisher3,4 · Sonja C. Vernes2,4 · Nael Nadif Kasri1,5 Received: 8 March 2018 / Accepted: 31 August 2018 © The Author(s) 2018 Abstract Heterozygous mutations of the Forkhead-box protein 2 (FOXP2) gene in humans cause childhood apraxia of speech. Loss of Foxp2 in mice is known to affect striatal development and impair motor skills. However, it is unknown if striatal excitatory/ inhibitory balance is affected during development and if the imbalance persists into adulthood. We investigated the effect of reduced Foxp2 expression, via a loss-of-function mutation, on striatal medium spiny neurons (MSNs). Our data show that heterozygous loss of Foxp2 decreases excitatory (AMPA receptor-mediated) and increases inhibitory (GABA receptor-medi- ated) currents in D1 dopamine receptor positive MSNs of juvenile and adult mice. Furthermore, reduced Foxp2 expression increases GAD67 expression, leading to both increased presynaptic content and release of GABA. Finally, pharmacological blockade of inhibitory activity in vivo partially rescues motor skill learning deficits in heterozygous Foxp2 mice. Our results suggest a novel role for Foxp2 in the regulation of striatal direct pathway activity through managing inhibitory drive. Keywords Foxp2 · Excitatory-inhibitory balance · Neurodevelopment · D1R-MSN · Striatum Introduction Balanced neuronal activity between cortex, striatum and Sonja C. Vernes and Nael Nadif Kasri contributed equally to this thalamus is essential for the generation of voluntary move- work. ments (Shepherd 2013). Imbalanced activity within the stria- tum is known to disrupt complex motor behaviors, such as Electronic supplementary material The online version of this the production of spoken language (Peach 2004; Square- article (https ://doi.org/10.1007/s0042 9-018-1746-6) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Transcription Factor MEF2C Influences Neural Stem/Progenitor Cell Differentiation and Maturation in Vivo
    Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo Hao Li*†, Jonathan C. Radford*†, Michael J. Ragusa‡, Katherine L. Shea‡, Scott R. McKercher*, Jeffrey D. Zaremba*, Walid Soussou*, Zhiguo Nie*, Yeon-Joo Kang*, Nobuki Nakanishi*, Shu-ichi Okamoto*, Amanda J. Roberts§, John J. Schwarz‡, and Stuart A. Lipton*§¶ *Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, La Jolla, CA 92037; ‡Center for Cardiovascular Sciences, Albany Medical Center, Albany, NY 12208; and §Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037 Edited by Eric N. Olson, University of Texas Southwestern Medical Center, Dallas, TX, and approved May 3, 2008 (received for review March 21, 2008) Emerging evidence suggests that myocyte enhancer factor 2 (MEF2) (7). Therefore, to investigate the role of MEF2C in brain develop- transcription factors act as effectors of neurogenesis in the brain, with ment, we conditionally knocked out Mef2c in neural stem/ MEF2C the predominant isoform in developing cerebrocortex. Here, progenitor cells by E9.5 by using a nestin-driven Cre [see supporting we show that conditional knockout of Mef2c in nestin-expressing information (SI) Materials and Methods) (11). Heterozygous neural stem/progenitor cells (NSCs) impaired neuronal differentiation n-Creϩ/Mef2cloxp/ϩ mice were indistinguishable from wild type in vivo, resulting in aberrant compaction and smaller somal size. NSC (WT) and served as littermate controls. Evidence for Cre-mediated proliferation and survival were not affected. Conditional null mice recombination included PCR, immunofluorescence, and immuno- surviving to adulthood manifested more immature electrophysiolog- blotting. Normally, MEF2 activity (Fig.
    [Show full text]
  • A Mef2 Gene That Generates a Muscle-Specific Isoform Via Alternative Mrna Splicing JAMES F
    MOLECULAR AND CELLULAR BIOLOGY, Mar. 1994, p. 1647-1656 Vol. 14, No. 3 0270-7306/94/$04.00 + 0 Copyright C) 1994, American Society for Microbiology A Mef2 Gene That Generates a Muscle-Specific Isoform via Alternative mRNA Splicing JAMES F. MARTIN,' JOSEPH M. MIANO,' CAROLYN M. HUSTAD,2 NEAL G. COPELAND,2 NANCY A. JENKINS,2 AND ERIC N. OLSON'* Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030,1 and Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 217022 Received 21 July 1993/Returned for modification 30 September 1993/Accepted 2 December 1993 Members of the myocyte-specific enhancer-binding factor 2 (MEF2) family of transcription factors bind a conserved A/T-rich sequence in the control regions of numerous muscle-specific genes. Mammalian MEF2 proteins have been shown previously to be encoded by three genes, MeQt, xMeJ2, and Me.2c, each of which gives rise to multiple alternatively spliced transcripts. We describe the cloning of a new member of the MEF2 family from mice, termed MEF2D, which shares extensive homology with other MEF2 proteins but is the product of a separate gene. MEF2D binds to and activates transcription through the MEF2 site and forms heterodimers with other members of the MEF2 family. Deletion mutations show that the carboxyl terminus of MEF2D is required for efficient transactivation. MEF2D transcripts are widely expressed, but alternative splicing of MEF2D transcripts gives rise to a muscle-specific isoform which is induced during myoblast differentiation.
    [Show full text]
  • Rb and N-Ras Function Together to Control Differentiation in the Mouse
    Rb and N-ras Function Together to Control Differentiation in the Mouse The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Takahashi, C., R. T. Bronson, M. Socolovsky, B. Contreras, K. Y. Lee, T. Jacks, M. Noda, R. Kucherlapati, and M. E. Ewen. 2003. “Rb and N-Ras Function Together To Control Differentiation in the Mouse.” Molecular and Cellular Biology 23 (15): 5256–68. doi:10.1128/ MCB.23.15.5256-5268.2003. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41543053 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA MOLECULAR AND CELLULAR BIOLOGY, Aug. 2003, p. 5256–5268 Vol. 23, No. 15 0270-7306/03/$08.00ϩ0 DOI: 10.1128/MCB.23.15.5256–5268.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Rb and N-ras Function Together To Control Differentiation in the Mouse Chiaki Takahashi,1† Roderick T. Bronson,2,3 Merav Socolovsky,4 Bernardo Contreras,1 Kwang Youl Lee,1‡ Tyler Jacks,5 Makoto Noda,6 Raju Kucherlapati,7 and Mark E. Ewen1* Department of Medical Oncology and Medicine, Dana-Farber Cancer Institute and Harvard Medical School,1 and Rodent Histopathology Core3 and Harvard-Partners Center for Genetics and Genomics,7 Harvard Medical School, Boston, Massachusetts 02115; Department of Pathology, Tufts University Schools
    [Show full text]
  • V5 Data Dictionary Supplement with Pending Data Element Updates
    V5 Data Dictionary Supplement with Pending Data Element Updates The mission of the NCDR® is to improve the quality of cardiovascular patient CathPCI by providing information, knowledge and tools; implementing quality initiatives; and supporting research that improves patient CathPCI and outcomes. The NCDR® is an initiative of the American College of Cardiology Foundation, with partnering support from the Society for Cardiovascular Angiography and Interventions for the CathPCI Registry. CONFIDENTIALITY NOTICE This document contains information confidential and proprietary to the American College of Cardiology Foundation. This document is intended to be a confidential communication between ACCF and participants of the CathPCI Registry and may involve information or material that may not be used, disclosed or reproduced without the written authorization of the ACCF. Those so authorized may only use this information for a purpose consistent with the authorization. Reproduction of any section of this document with permission must include this notice. Table of Contents Section G. Cath Lab Visit Seq#7400 Indications for Cath Lab Visit....................................................................................Page 3 Seq#7405 Chest Pain Symptom Assessment…………………………………….…………………………………..Page 5 Section I. PCI Procedure Seq#7825 Percutaneous Coronary Intervention Indication......................................................Page 6 Review of Cath Lab Indications & PCI Indications…………………………………………….….….……….…. Page 8 Section K. Intra and Post-Procedure
    [Show full text]
  • NCDR® Cathpci Registry® V4.4 Coder's Data Dictionary
    NCDR® CathPCI Registry® v4.4 Coder's Data Dictionary A. Demographics Seq. #: 2000 Name: Last Name Coding Instructions: Indicate the patient's last name. Hyphenated names should be recorded with a hyphen. Target Value: The value on arrival at this facility Selections: (none) Supporting Definitions: (none) Seq. #: 2010 Name: First Name Coding Instructions: Indicate the patient's first name. Target Value: The value on arrival at this facility Selections: (none) Supporting Definitions: (none) Seq. #: 2020 Name: Middle Name Coding Instructions: Indicate the patient's middle name. Note(s): It is acceptable to specify the patient's middle initial. If the patient does not have a middle name, leave field blank. If the patient has multiple middle names, enter all of the middle names sequentially. Target Value: The value on arrival at this facility Selections: (none) Supporting Definitions: (none) Seq. #: 2030 Name: SSN Coding Instructions: Indicate the patient's United States Social Security Number (SSN). Note(s): If the patient does not have a US Social Security Number (SSN), leave blank and check 'SSN NA'. Target Value: The value on arrival at this facility Selections: (none) Supporting Definitions: (none) Seq. #: 2031 Name: SSN N/A Coding Instructions: Indicate if the patient does not have a United States Social Security Number(SSN). Target Value: The value on arrival at this facility Selections: Selection Text Definition No Yes Supporting Definitions: (none) Effective for Patient Discharges April 1, 2011 © 2008, American College of Cardiology Foundation 1/5/2011 3:12:46 PM Page 1 of 82 NCDR® CathPCI Registry® v4.4 Coder's Data Dictionary A.
    [Show full text]