Guidelines for Monitoring and Management of Pediatric Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures Charles J

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Monitoring and Management of Pediatric Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures Charles J Guidelines for Monitoring and Management of Pediatric Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures Charles J. Coté, MD, FAAP, Stephen Wilson, DMD, MA, PhD, AMERICAN ACADEMY OF PEDIATRICS, AMERICAN ACADEMY OF PEDIATRIC DENTISTRY The safe sedation of children for procedures requires a systematic approach abstract that includes the following: no administration of sedating medication without the safety net of medical/dental supervision, careful presedation evaluation This document is copyrighted and is property of the American Academy of Pediatrics and its Board of Directors. All authors have filed for underlying medical or surgical conditions that would place the child at conflict of interest statements with the American Academy of increased risk from sedating medications, appropriate fasting for elective Pediatrics. Any conflicts have been resolved through a process approved by the Board of Directors. The American Academy of procedures and a balance between the depth of sedation and risk for those Pediatrics has neither solicited nor accepted any commercial who are unable to fast because of the urgent nature of the procedure, involvement in the development of the content of this publication. a focused airway examination for large (kissing) tonsils or anatomic airway Clinical reports from the American Academy of Pediatrics benefit from expertise and resources of liaisons and internal (AAP) and external abnormalities that might increase the potential for airway obstruction, a clear reviewers. However, clinical reports from the American Academy of understanding of the medication’s pharmacokinetic and pharmacodynamic Pediatrics may not reflect the views of the liaisons or the organizations or government agencies that they represent. effects and drug interactions, appropriate training and skills in airway The guidance in this report does not indicate an exclusive course of management to allow rescue of the patient, age- and size-appropriate treatment or serve as a standard of medical/dental care. Variations, equipment for airway management and venous access, appropriate taking into account individual circumstances, may be appropriate. medications and reversal agents, sufficient numbers of appropriately trained All clinical reports from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, staff to both carry out the procedure and monitor the patient, appropriate revised, or retired at or before that time. physiologic monitoring during and after the procedure, a properly equipped DOI: https://doi.org/10.1542/peds.2019-1000 and staffed recovery area, recovery to the presedation level of consciousness PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). before discharge from medical/dental supervision, and appropriate discharge Copyright © 2019 by the American Academy of Pediatric Dentistry and instructions. This report was developed through a collaborative effort of the American Academy of Pediatrics. This report is also being published in American Academy of Pediatrics and the American Academy of Pediatric Pediatr Dent 2019;41(4): in press. The articles are identical. Either citation can be used when citing this report. Dentistry to offer pediatric providers updated information and guidance in FINANCIAL DISCLOSURE: The authors have indicated they do not have delivering safe sedation to children. a financial relationship relevant to this article to disclose. FUNDING: No external funding. To cite: Coté CJ, Wilson S. AMERICAN ACADEMY OF INTRODUCTION PEDIATRICS, AMERICAN ACADEMY OF PEDIATRIC DENTISTRY. The number of diagnostic and minor surgical procedures performed on Guidelines for Monitoring and Management of Pediatric pediatric patients outside of the traditional operating room setting has Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures. Pediatrics. 2019;143(6):e20191000 increased in the past several decades. As a consequence of this change and Downloaded from www.aappublications.org/news by guest on October 4, 2021 PEDIATRICS Volume 143, number 6, June 2019:e20191000 FROM THE AMERICAN ACADEMY OF PEDIATRICS the increased awareness of the these safety principles have been Pediatric Sedation Research importance of providing analgesia and widely implemented and shown to Consortium has improved the anxiolysis, the need for sedation for reduce morbidity.† These practice sedation knowledge base, procedures in physicians’ offices, recommendations are proffered with demonstrating the marked safety dental offices, subspecialty procedure the awareness that, regardless of the of sedation by highly motivated suites, imaging facilities, emergency intended level of sedation or route of and skilled practitioners from departments, other inpatient hospital drug administration, the sedation of a variety of specialties practicing settings, and ambulatory surgery a pediatric patient represents the above modalities and skills – centers also has increased markedly.1 52 a continuum and may result in that focus on a culture of sedation In recognition of this need for both respiratory depression, laryngospasm, safety.45,83,95,128–138 However, these elective and emergency use of impaired airway patency, apnea, loss of groundbreaking studies also show sedation in nontraditional settings, the patient’sprotectiveairwayreflexes, a low but persistent rate of potential the American Academy of Pediatrics and cardiovascular instability.‡ sedation-induced life-threatening (AAP) and the American Academy of events, such as apnea, airway Pediatric Dentistry (AAPD) have Procedural sedation of pediatric obstruction, laryngospasm, x published a series of guidelines for patients has serious associated risks. pulmonary aspiration, desaturation, the monitoring and management of These adverse responses during and and others, even when the sedation pediatric patients during and after after sedation for a diagnostic or is provided under the direction of – sedation for a procedure.53 58 The therapeutic procedure may be a motivated team of specialists.129 purpose of this updated report is to minimized, but not completely These studies have helped define the unify the guidelines for sedation used eliminated, by a careful preprocedure skills needed to rescue children by medical and dental practitioners; review of the patient’s underlying experiencing adverse sedation to add clarifications regarding medical conditions and consideration events. monitoring modalities, particularly of how the sedation process might regarding continuous expired carbon affect or be affected by these The sedation of children is different dioxide measurement; to provide conditions: for example, children with from the sedation of adults. Sedation updated information from the developmental disabilities have been in children is often administered to medical and dental literature; and to shown to have a threefold increased relieve pain and anxiety as well as to suggest methods for further incidence of desaturation compared modify behavior (eg, immobility) so improvement in safety and outcomes. with children without developmental as to allow the safe completion of 74,78,103 This document uses the same disabilities. Appropriate drug a procedure. A child’s ability to language to define sedation selection for the intended procedure, control his or her own behavior to categories and expected physiologic a clear understanding of the sedating cooperate for a procedure depends responses as The Joint Commission, medication’s pharmacokinetics and both on his or her chronologic age the American Society of pharmacodynamics and drug and cognitive/emotional Anesthesiologists (ASA), and the interactions, as well as the presence development. Many brief procedures, – AAPD.56,57,59 61 of an individual with the skills needed such as suture of a minor laceration, to rescue a patient from an adverse may be accomplished with This revised statement reflects the response are critical.# Appropriate distraction and guided imagery current understanding of appropriate physiologic monitoring and techniques, along with the use of monitoring needs of pediatric patients continuous observation by personnel topical/local anesthetics and both during and after sedation for not directly involved with the minimal sedation, if needed.175–181 a procedure.* The monitoring and care procedure allow for the accurate and However, longer procedures that outlined may be exceeded at any time rapid diagnosis of complications and require immobility involving on the basis of the judgment of the initiation of appropriate rescue children younger than 6 years or responsible practitioner. Although interventions.** The work of the those with developmental delay intended to encourage high-quality oftenrequireanincreaseddepthof † patient care, adherence to the Refs 11, 23, 24, 27, 30–33, 35, 39, 41, 44, 47, 51, sedation to gain control of their – recommendationsinthisdocument and 74 84 behavior.86,87,103 Children younger ‡ – cannot guarantee a specificpatient Refs 38, 43, 45, 47, 48, 59, 62, 63, and 85 112 than 6 years (particularly those x Refs 2, 5, 38, 43, 45, 47, 48, 62, 63, 71, 83, 85, outcome. However, structured sedation younger than 6 months) may be at 88–105, and 107–138 protocols designed to incorporate 129 # Refs 42, 48, 62, 63, 92, 97, 99, 125–127, 132, 133, greatest risk of an adverse event. and 139–158 Childreninthisagegroupare * Refs 3, 4, 11, 18, 20, 21, 23, 24, 33, 39, 41, 44, 47, ** Refs 44, 63, 64, 67, 68, 74, 90, 96, 110,
Recommended publications
  • Patient-Monitoring Systems
    17 Patient-Monitoring Systems REED M. GARDNER AND M. MICHAEL SHABOT After reading this chapter,1 you should know the answers to these questions: ● What is patient monitoring, and why is it done? ● What are the primary applications of computerized patient-monitoring systems in the intensive-care unit? ● How do computer-based patient monitors aid health professionals in collecting, analyzing, and displaying data? ● What are the advantages of using microprocessors in bedside monitors? ● What are the important issues for collecting high-quality data either automatically or manually in the intensive-care unit? ● Why is integration of data from many sources in the hospital necessary if a computer is to assist in critical-care-management decisions? 17.1 What Is Patient Monitoring? Continuous measurement of patient parameters such as heart rate and rhythm, respira- tory rate, blood pressure, blood-oxygen saturation, and many other parameters have become a common feature of the care of critically ill patients. When accurate and imme- diate decision-making is crucial for effective patient care, electronic monitors frequently are used to collect and display physiological data. Increasingly, such data are collected using non-invasive sensors from less seriously ill patients in a hospital’s medical-surgical units, labor and delivery suites, nursing homes, or patients’ own homes to detect unex- pected life-threatening conditions or to record routine but required data efficiently. We usually think of a patient monitor as something that watches for—and warns against—serious or life-threatening events in patients, critically ill or otherwise. Patient monitoring can be rigorously defined as “repeated or continuous observations or meas- urements of the patient, his or her physiological function, and the function of life sup- port equipment, for the purpose of guiding management decisions, including when to make therapeutic interventions, and assessment of those interventions” (Hudson, 1985, p.
    [Show full text]
  • Capnography 101 Oxygenation and Ventilation
    It’s Time to Start Using it! Capnography 101 Oxygenation and Ventilation What is the difference? Oxygenation and Ventilation Ventilation O Oxygenation (capnography) 2 (oximetry) CO Cellular 2 Metabolism Capnographic Waveform • Capnograph detects only CO2 from ventilation • No CO2 present during inspiration – Baseline is normally zero CD AB E Baseline Capnogram Phase I Dead Space Ventilation • Beginning of exhalation • No CO2 present • Air from trachea, posterior pharynx, mouth and nose – No gas exchange occurs there – Called “dead space” Capnogram Phase I Baseline A B I Baseline Beginning of exhalation Capnogram Phase II Ascending Phase • CO2 from the alveoli begins to reach the upper airway and mix with the dead space air – Causes a rapid rise in the amount of CO2 • CO2 now present and detected in exhaled air Alveoli Capnogram Phase II Ascending Phase C Ascending II Phase Early A B Exhalation CO2 present and increasing in exhaled air Capnogram Phase III Alveolar Plateau • CO2 rich alveolar gas now constitutes the majority of the exhaled air • Uniform concentration of CO2 from alveoli to nose/mouth Capnogram Phase III Alveolar Plateau Alveolar Plateau CD III AB CO2 exhalation wave plateaus Capnogram Phase III End-Tidal • End of exhalation contains the highest concentration of CO2 – The “end-tidal CO2” – The number seen on your monitor • Normal EtCO2 is 35-45mmHg Capnogram Phase III End-Tidal End-tidal C D AB End of the the wave of exhalation Capnogram Phase IV Descending Phase • Inhalation begins • Oxygen fills airway • CO2 level quickly
    [Show full text]
  • Data Driven Investigation of Bispectral Index Algorithm
    www.nature.com/scientificreports OPEN Data Driven Investigation of Bispectral Index Algorithm Hyung-Chul Lee, Ho-Geol Ryu, Yoonsang Park , Soo Bin Yoon, Seong Mi Yang, Hye-Won Oh & Chul-Woo Jung Received: 7 January 2019 Bispectral index (BIS), a useful marker of anaesthetic depth, is calculated by a statistical multivariate Accepted: 9 September 2019 model using nonlinear functions of electroencephalography-based subparameters. However, only Published: xx xx xxxx a portion of the proprietary algorithm has been identifed. We investigated the BIS algorithm using clinical big data and machine learning techniques. Retrospective data from 5,427 patients who underwent BIS monitoring during general anaesthesia were used, of which 80% and 20% were used as training datasets and test datasets, respectively. A histogram of data points was plotted to defne fve BIS ranges representing the depth of anaesthesia. Decision tree analysis was performed to determine the electroencephalography subparameters and their thresholds for classifying fve BIS ranges. Random sample consensus regression analyses were performed using the subparameters to derive multiple linear regression models of BIS calculation in fve BIS ranges. The performance of the decision tree and regression models was externally validated with positive predictive value and median absolute error, respectively. A four-level depth decision tree was built with four subparameters such as burst suppression ratio, power of electromyogram, 95% spectral edge frequency, and relative beta ratio. Positive predictive values were 100%, 80%, 80%, 85% and 89% in the order of increasing BIS in the fve BIS ranges. The average of median absolute errors of regression models was 4.1 as BIS value.
    [Show full text]
  • Monitoring Anesthetic Depth
    ANESTHETIC MONITORING Lyon Lee DVM PhD DACVA MONITORING ANESTHETIC DEPTH • The central nervous system is progressively depressed under general anesthesia. • Different stages of anesthesia will accompany different physiological reflexes and responses (see table below, Guedel’s signs and stages). Table 1. Guedel’s (1937) Signs and Stages of Anesthesia based on ‘Ether’ anesthesia in cats. Stages Description 1 Inducement, excitement, pupils constricted, voluntary struggling Obtunded reflexes, pupil diameters start to dilate, still excited, 2 involuntary struggling 3 Planes There are three planes- light, medium, and deep More decreased reflexes, pupils constricted, brisk palpebral reflex, Light corneal reflex, absence of swallowing reflex, lacrimation still present, no involuntary muscle movement. Ideal plane for most invasive procedures, pupils dilated, loss of pain, Medium loss of palpebral reflex, corneal reflexes present. Respiratory depression, severe muscle relaxation, bradycardia, no Deep (early overdose) reflexes (palpebral, corneal), pupils dilated Very deep anesthesia. Respiration ceases, cardiovascular function 4 depresses and death ensues immediately. • Due to arrival of newer inhalation anesthetics and concurrent use of injectable anesthetics and neuromuscular blockers the above classic signs do not fit well in most circumstances. • Modern concept has two stages simply dividing it into ‘awake’ and ‘unconscious’. • One should recognize and familiarize the reflexes with different physiologic signs to avoid any untoward side effects and complications • The system must be continuously monitored, and not neglected in favor of other signs of anesthesia. • Take all the information into account, not just one sign of anesthetic depth. • A major problem faced by all anesthetists is to avoid both ‘too light’ anesthesia with the risk of sudden violent movement and the dangerous ‘too deep’ anesthesia stage.
    [Show full text]
  • Air & Surface Transport Nurses Association Position Statement
    Air & Surface Transport Nurses Association Position Statement Advanced Airway Management Background In the early 1970s, civilian flight nursing became a recognized nursing specialty and an integral element in the care of critically ill and injured patients. Advanced airway management is an essential procedure in meeting those patient care goals. The procedure can be performed safely and effectively by properly trained transport teams; however, it is not without risks and complications. Individual state Boards of Nursing regulate registered nursing licensure. ASTNA believes transport providers and teams must work collegially and collaboratively with these regulatory bodies. Registered nurses who perform advanced airway management provide care under the direction and protocols of their medical directors. In addition, Registered Nurses who perform advanced airway management skills must have comprehensive initial and ongoing education to optimize clinical knowledge, skill, and decision-making ability. Education programs teaching these advanced airway management skills should include at least the following components: • Comprehensive review of airway/respiratory anatomy and physiology • Basic airway skills and techniques • Clinical assessment skills to evaluate the need for escalated intervention • Extraglottic airway devices • Tracheal intubation using a variety of devices • Surgical airway techniques • Pharmacology and clinical application of sedative, analgesic, hypnotic, and neuromuscular blocking agents used in advanced airway management • Patient safety monitoring equipment, including continuous pulse oximetry, continuous heart rate, and continuous monitoring of waveform capnography • Teamwork and crisis resource management, as applied to the clinical environment both as team leaders and team members Clinical best practices evolve continuously.1 Transport programs performing advanced airway should adopt policies that ensure clinical education and practice components remain current.
    [Show full text]
  • The Bispectral Index Response to Tracheal Intubation Is Similar In
    458 GENERAL ANESTHESIA The bispectral index response to tracheal intuba- tion is similar in normotensive and hypertensive patients [La réponse de l’index bispectral à l’intubation endotrachéale est similaire chez les patients normotendus et hypertendus] Masayasu Nakayama MD,* Hiromichi Ichinose MD,† Shuji Yamamoto MD,† Noriaki Kanaya MD,* Akiyoshi Namiki MD PhD* Purpose: To compare the hemodynamic and bispectral index (BIS) Conclusion : Les patients hypertendus ou non réagissent par la même responses to tracheal intubation in normotensive and hypertensive réaction d’éveil (mesurée par le BIS) à l’intubation endotrachéale mal- patients. gré l’augmentation de la réponse vasopressive chez les hypertendus. Method: Three minutes after induction of anesthesia with thiamy- lal and fentanyl, tracheal intubation was performed in 24 nor- motensive and 22 hypertensive patients. Heart rate (HR), mean arterial pressure (MAP), and BIS were measured every minute. HE bispectral index (BIS), obtained from Results: Tracheal intubation increased HR, MAP, and BIS in both bispectral analysis of the electroencephalo- normotensive and hypertensive patients. The increase in MAP was gram (EEG), reflects the hypnotic compo- significantly greater in hypertensive patients than in normotensive nent of anesthesia.1–3 Previous studies have patients, but there were no differences in HR or BIS in the two T shown that tracheal intubation is associated with groups of patients. increases in BIS as well as heart rate (HR) and blood Conclusion: Patients with and without hypertension exhibit the pressure.4–6 Therefore, intubation is likely to affect same arousal response (as measured by BIS) to tracheal intubation both the hypnotic and antinociceptive components of despite the enhanced vasopressor response in hypertensive anesthesia.
    [Show full text]
  • An Introduction to Anaesthesia
    What You Need to KNoW about An introduction to anaesthesia Introduction divided into three stages: induction, main- n Central neuraxial block, e.g. spinal or Anaesthetic experience in the undergradu- tenance and emergence. epidural (Figure 1 and Table 1). ate timetable is often very limited so it can In regional anaesthesia, nerve transmis- remain somewhat of a mysterious practice sion is blocked, and the patient may stay Components of a general well into specialist training. This introduc- awake or be sedated or anaesthetized dur- anaesthetic tion to the components of an anaesthetic ing a procedure. Techniques used include: A general anaesthetic always involves an will help readers to get more from clinical n Local anaesthetic field block hypnotic agent, usually an analgesic and attachments in surgery and anaesthetics or n Peripheral nerve block may also include muscle relaxation. The serve as an introduction to the topic for n Nerve plexus block combination is referred to as the ‘triad of novice or non-anaesthetists. anaesthesia’. Figure 1. Schematic vertical longitudinal section The relative importance of each com- Types and sites of anaesthesia of vertebral column and structures encountered ponent depends on surgical and patient The term anaesthesia comes from the when performing central neuraxial blocks. * factors: the intervention planned, site, Greek meaning loss of sensation. negative pressure space filled with fat and surgical access requirement and the Anaesthetic practice has evolved from a venous plexi. † extends to S2, containing degree of pain or stimulation anticipated. need for pain relief and altered conscious- arachnoid mater, CSF, pia mater, spinal cord The technique is tailored to the individu- ness to allow surgery.
    [Show full text]
  • Inpatient Sepsis Management
    Inpatient Sepsis Management - Adult Page 1 of 6 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women. PRESENTATION EVALUATION TREATMENT Call Code Blue Team1 Patient exhibits at least two of the Yes following modified SIRS criteria: ● Temperature < 36 or > 38.4°C Is patient ● MERIT team1 to evaluate and notify Primary MD/APP STAT ● Heart rate > 110 bpm unresponsive? ● Prepare transfer to ICU See Page 2: Sepsis ● Respiratory rate > 24 bpm ● Assess for presence of infection (see Appendix A) Management ● WBC count < 3 or > 15 K/microliter ● Assess for organ dysfunction (see Appendix B) No Yes ● Primary team to consider goals of care discussion if appropriate Is 1,2 the patient ● Sepsis APP to notify unstable? Primary MD/APP 1,2 ● Sepsis APP to evaluate ● See Page 2: Sepsis No ● Assess for presence of infection (see Yes Management Appendix A) Sepsis? ● Assess for organ dysfunction (see ● For further work up, Appendix B) No initiate Early Sepsis Order Set ● Follow up evaluation by SIRS = systemic inflammatory response syndrome Primary Team APP = advanced practice provider 1 For patients in the Acute Cancer
    [Show full text]
  • Adequate Interval for the Monitoring of Vital Signs During Endotracheal Intubation J.Y
    Min et al. BMC Anesthesiology (2017) 17:110 DOI 10.1186/s12871-017-0399-y RESEARCHARTICLE Open Access Adequate interval for the monitoring of vital signs during endotracheal intubation J.Y. Min1, H.I. Kim1, S.J Park1, H. Lim2, J.H. Song2 and H. J. Byon1* Abstract Background: In the perioperative period, it may be inappropriate to monitor vital signs during endotracheal intubation using the same interval as during a hemodynamically stable period. The aim of the present study was to determine whether it is appropriate to use the same intervals used during the endotracheal intubation and stable periods to monitor vital signs of patients under general anesthesia. Methods: The mean arterial pressure (MAP) and heart rate (HR) were continuously measured during endotracheal intubation (15 min after intubation) and hemodynamically stable (15 min before skin incision) periods in 24 general anesthesia patients. Data was considered “unrecognized” when continuously measured values were 30% more or less than the monitored value measured at 5- or 2.5-min intervals. The incidence of unrecognized data during endotracheal intubation was compared to that during the hemodynamically stable period. Result: ThereweresignificantlymoreunrecognizedMAPdatameasured at 5-min intervals during endotracheal intubation than during the hemodynamically stable period (p value <0.05). However, there was no difference in the incidence of unrecognized MAP data at 2.5 min intervals or HR data at 5 or 2.5 min intervals between during the endotracheal intubation and hemodynamically stable periods. Conclusion: A 5-min interval throughout the operation period was not appropriate for monitoring vital signs. Therefore, , a 2.5-min interval is recommended for monitoring the MAP during endotracheal intubation.
    [Show full text]
  • 2020 AAHA Anesthesia and Monitoring Guidelines for Dogs and Cats*
    VETERINARY PRACTICE GUIDELINES 2020 AAHA Anesthesia and Monitoring Guidelines for Dogs and Cats* Tamara Grubb, DVM, PhD, DACVAAy, Jennifer Sager, BS, CVT, VTS (Anesthesia/Analgesia, ECC)y, James S. Gaynor, DVM, MS, DACVAA, DAIPM, CVA, CVPP, Elizabeth Montgomery, DVM, MPH, Judith A. Parker, DVM, DABVP, Heidi Shafford, DVM, PhD, DACVAA, Caitlin Tearney, DVM, DACVAA ABSTRACT Risk for complications and even death is inherent to anesthesia. However, the use of guidelines, checklists, and training can decrease the risk of anesthesia-related adverse events. These tools should be used not only during the time the patient is unconscious but also before and after this phase. The framework for safe anesthesia delivered as a continuum of care from home to hospital and back to home is presented in these guidelines. The critical importance of client commu- nication and staff training have been highlighted. The role of perioperative analgesia, anxiolytics, and proper handling of fractious/fearful/aggressive patients as components of anesthetic safety are stressed. Anesthesia equipment selection and care is detailed. The objective of these guidelines is to make the anesthesia period as safe as possible for dogs and cats while providing a practical framework for delivering anesthesia care. To meet this goal, tables, algorithms, figures, and “tip” boxes with critical information are included in the manuscript and an in-depth online resource center is available at aaha.org/anesthesia. (J Am Anim Hosp Assoc 2020; 56:---–---. DOI 10.5326/JAAHA-MS-7055) AFFILIATIONS Other recommendations are based on practical clinical experience and From Washington State University College of Veterinary Medicine, Pullman, a consensus of expert opinion.
    [Show full text]
  • The Introduction of Bispectral Index (BIS) in Anesthesia Practice
    EDITORIAL VIEW The introduction of bispectral index (BIS) in anesthesia practice Dario Galante, MD, Matteo Melchionda, MD University Department of Anesthesia and Intensive Care University Hospital Ospedali Riuniti, Foggia, Italy Correspondance: Dario Galante, MD, University Department of Anesthesia and Intensive Care, University Hospital Ospedali Riuniti, Foggia (Italy); E-mail: [email protected] SUMMARY During every surgical procedure we must keep the anesthetic level at an appropriate level so that the patient will neither feel pain nor remember the operation. Yet this anesthetic depth must be balanced against the negative effects and consequences of excess anesthetic and the associated potential for delayed wake up. A wide range of monitoring devices allows us to to avoid the risks of pain, unwanted movements, hemodynamic changes as well as awareness. During the past few years processed EEG signals have become available that help gauge the depth of anesthesia by generating a score linked to EEG activity, which becomes depressed as anesthesia deepens. The bispectral index (BIS) represents one of these innovative methods of monitoring in anesthesia, even if more studies are still needed to make it more precise, especially in pediatric patients and neonates where reliability has yet to be well established. Key words: Bispectral index; Neurological monitoring; Awareness; Depth of anesthesia Citation: Galante D, Melchionda M. The introduction of bispectral index (BIS) in anesthesia practice. Anaesth Pain & Intensive Care 2012;16(3):235-236 The Bispectral IndexTM (Aspect Medical Systems Inc., b) It calculates the index of the state of sedation due to Newton, Mass) is a complex EEG parameter that changes induced by anesthetics by an algorithm combines power spectrum analysis, time domain analysis c) It obtains the value that is recorded by means of a and it values their changes over time.
    [Show full text]
  • CAPNOGRAPHY Policy
    Stillwater Medical Center, 1323 West Sixth Stillwater, OK 74074 CAPNOGRAPHY (END-TIDAL CO2 MONITORING) PURPOSE To provide guidelines for patient selection and capnography monitoring for patients in ICU and Emergency Department. DEFINITIONS A. Capnograph: A graphic representation (waveform) of exhaled CO2 levels in the form of a tracing. B. Capnography: non-invasive method for monitoring the level of CO2 in exhaled breath (ETCO2) to assess a patient’s ventilator status. It is the combination of the numeric measurement (capnometry) with the waveform (capnography). C. Capnometry: The numeric measurement of the concentration of CO2 in the airway during inspiration and expiration. D. ETCO2/End-tidal CO2: Also known as PetCO2. Measurement of CO2 concentration at the very end of expiration is termed end-tidal CO2. E. Capnoline: A nasal cannula-like device that allows sampling of the CO2 and can also deliver oxygen to the patient. POLICY A physician’s/licensed independent practitioner’s order is not needed for nurses to initiate and use Capnography or End Tidal CO2 (ETCO2) Monitoring. Tubing Selection A. The Smart CapnoLine H Plus O2 tubing should be used for all spontaneously breathing patients requiring ETCO2 monitoring greater than 12 hours. This tubing is marked by a yellow end piece. B. The Smart CapnoLine Plus O2 tubing should be used for all spontaneously breathing patients requiring ETCO2 monitoring less than 12 hours. This tubing is marked by an orange end piece. C. The Filterline H Set (M1921A) should be used for patients on the mechanical ventilator who require ETCO2 monitoring. This set is typically placed by Respiratory Therapy and is marked with a yellow end piece.
    [Show full text]