Of Limb Morphogenesis in a Model System

Total Page:16

File Type:pdf, Size:1020Kb

Of Limb Morphogenesis in a Model System DEVELOPMENTAL BIOLOGY 28, 113-122 (1972) Analysis of Limb Morphogenesis in a Model System ROBERT H. SINGER’. 2 Department of Biology, Brandeis University, Waltham, Massachusetts Accepted January 27, 1972 A method for analysis of chicken limb morphogenesis was devised. This method consisted of grafting a limb ectodermal jacket containing dissociated and pelleted mesenchymal cellular com- ponents to the host somites. Different cellular components stuffed into the ectoderm could be mixed in varied ratios. After 7 days the grafts were analyzed for outgrowth. Stage 19 mesoblast cells alone when treated as above gave limblike outgrowths with good digits, toes, and claws in all cases. However, mesoblasts from the proximal half of older limbs (stages 24, 25 and chondro- cytes) gave no outgrowths, and those from stage 23 gave outgrowths in 9% of the cases. In mixtures of 5% stage 19 cells with 95% chondrocytes, consistent morphogenesis (i.e., in 65% of grafts) oc- curred. The amount of morphogenesis (size of graft and perfection of digits) was directly propor- tional to the amount of stage 19 cells. However, these cells mixed with proximal cells of stages 23, 24, or 25 required higher proportions for equivalent morphogenesis. To obtain morphogenesis equivalent to the 5% mixture with chondrocytes, 10% stage 19 cells were needed when mixed with proximal stage 23, 25% with proximal stage 24 and 7% with proximal stage 25. Mixtures of stage 19 cells added to nonlimb (flank, stage- 19) mesoderm, formed large tumorous mounds of tissue with no limblike features. INTRODUCTION ectoderm ridge serves as a specific induc- The limb bud presents a good model of tive structure initiating and directing out- a developing system. The relationship be- growth and digit formation from the early tween the mesoblast and its ectodermal bud. The mesoderm, upon which the ridge cover, and the histogenesis and cytodif- exerts its effect, in turn supports the in- ferentiation of cartilage allows an investi- tegrity of the ridge by producing a “main- gation of several levels of organization in tenance factor” (see review by Zwilling, a self-contained and easily manipulated 1961). More recently, experimental inter- body part. Beginning with the pioneering est has enlightened cellular events perti- work of Saunders (1948) and Zwilling nent to limb morphogenesis including: (1949) the reciprocal interaction between the onset of histogenesis (Searls, 1965; limb bud ectoderm and mesoderm was Medoff, 1967); the stability of differenti- uncovered and identified. The relation- ated cellular phenotypes in culture (Coon, ship served as a model for the analysis of 1966; Cahn and Cahn, 1966; Nameroff the nature and the role of different tissues and Holtzer, 1967); the cellular programs in construction of the limb. The apical being followed during morphogenesis (Fallon and Saunders, 1968); and the time- ‘This research was completed under the direc- dependent decrease in the capability of tion of Professor Zwilling in partial fulfillment of the cells to change their morphogenetic pro- requirements for the degree of Doctor of Philosophy. The years I spent with Edgar Zwilling bring to mem- grams (Crosby, 1967; Cairns and Saunders, ory his kindness, integrity, and inspiration, and I 1954; Zwilling, 1955; Zwilling, 1968; dedicate my contributions in this work to his mem- Searls and Janners, 1969, 1971; Finch and ory. Supported by Grants Tl-HD-22 and HD-03465 Zwilling, 1971; Singer, 1972). from the National Institute of Child Health and Hu- The technique of independently manipu- man Development. ‘Present address: Department of Biology, 16. lating ectoderm and mesoderm in the 839, Massachusetts Institute of Technology, Cam- study of limb morphogenesis has allowed bridge, Massachusetts 02139. an elucidation of the developmental capa- 113 Copyright 0 1978 hy Academic Press, Inc. 114 DEVELOPMENTAL BIOLOGY VOLUME 28, 1972 bilities of combinations of nonlimb meso- form individual tissues (Crosby, 1967; derm with limb ectoderm as well as reveal- Zwilling, 1968; Singer, 1972). ing the patterns inherent in the limb The present work is a quantitative analy- mesoderm (Zwilling, 1955, 1956a, b; sis of the regulative capacities of meso- Saunders et al., 1959). More recently blast cells using the manipulative grafting Zwilling (1964) introduced a technique of procedures reviewed above. Young meso- studying the organizational and histo- blast cells were “diluted” with cells no genetic capacities of limb mesoblast cells longer capable of morphogenetic modula- which involved removal of the mesoblast, tion (no longer having “limbness” traits). dissociating the cells, then pelleting and The results show that such quantitative reimplanting them in an epidermal jacket, alterations elicit striking changes in and finally transplanting the stuffed ecto- morphogenetic expressions. derm to an ectopic flank site. Crosby (1967) used this method to measure the MATERIALS AND METHODS response to the apical ridge of mesoblast The method whereby cells are dissoci- cells in early stages before limb bud out- ated and stuffed into an ectodermal jacket growth (stage 13 of Hamburger and Hamil- is extensively described by Finch and ton, 1951). Her results affirmed the Zwilling (1971). About 50-60 leg buds, earlier conclusion of Zwilling (1955) and stage 19, were excised from White Leg- Saunders et al. (1957) that only limb meso- horn embryos and the mesoblast was derm is capable of growth and prolifera- denuded of its ectodermal covering with a tion when associated with the ridge and is 30-min treatment in a mixture of 2% tryp- the only mesoderm capable of supporting sin (Nutritional Biochemicals Corp.) (or inducing regeneration of) the ridge by and 1% pancreatin (Nutritional Biochemi- producing a maintenance factor (Amprino cals Corp.). All manipulations were done and Camosso, 1958; Saunders et al., 1957; in calcium- and magnesium-free Tyrode’s Searls and Zwilling, 1964). Moreover, solution (CMF). The freed mesoblast was Finch and Zwilling (1971) showed that then dissociated into a cell suspension by these properties are not expressed by further treatment with 1 ml of a 1% crys- mesoderm cells later than stage 24 or by talline trypsin solution (Worthington distal mesoblast tissue later than stage 26. Biochemical Corp.) for 20 min (38” C) . The The transient limb properties (“limbness”), mixture was poured into a full test tube which are typified by the response of (8 ml) of horse serum-Tyrode’s solution limb cells to the ridge resulting in growth (1: 1) and the cells were allowed to settle and morphogenesis of a limb, has been to the bottom. All but the bottom milliliter termed by Zwilling (1968) the “morpho- of horse serum solution was removed, and genetic phase” of limb development. The the cellular conglomerate was further dis- time when the limb cells acquire the po- rupted with a Vortex mixer. In the dissoci- tential for forming a limb precedes the ation of mesoblast cells from later stages, time when they become committed to a the cells from the dense chondrogenic cytodifferentiative path, for example as regions which failed to suspend even measured by the first appearance of en- after increased trypsinization (up to an zyme activity for synthesis of sulfated hour) were removed by filtration through mucopolysaccharides and other end prod- a 20-mesh Nitex cloth (Tobler, Ernst ucts (Searls, 1965; Medoff, 1967). Finally, and Traber; Elmsford, New York). the technique of dissociation and reim- For the preparation of chondrocytes plantation was also used to analyze the from stage 30 limbs (7 days), the legs capacity of mesoblast cells to sort out and were minced and then incubated with SINGER Analysis of Limb Morphogenesis 115 crystalline trypsin for 45 min. The tissue became firm. The pellet was removed clusters were dropped through a column of with a sterile spatula and placed in a dish CMF and further disrupted in the remain- containing horse serum solution. The pellet ing 1 ml after removing the supernatant. was subdivided into fragments each of After disruption, 4 ml of CMF was added which was stuffed into an ectodermal sac and mixed and the remaining chunks were which was just removed from stage 20 leg allowed to settle. The supernatant was buds. The stuffed ectoblasts were then discarded; the tissue pieces were then incubated in horse serum solution for 45 incubated in a depression dish in CMF min at 38°C. Eggs windowed at 4 days for 30 min, and the disruption procedures of incubation were used for grafting. An were repeated. The remaining tissue was excision of epidermis about one somite mainly cartilage rods. The rods were in- square was made over the somites of a cubated in the crystalline trypsin solution stage 20 animal just dorsal to the wing for 1 hr at 38”C, and then dropped through bud. The stuffed ectoblast was grafted to a test tube of horse serum solution; the the excised area with the free mesodermal supernatant was removed, and the re- area in contact with the graft site. The mainder was disrupted by Vortex agita- window was then sealed with Scotch tion. The cellular suspension was then brand tape and the egg was returned to passed through Nitex cloth to remove the incubator. After 2 days the grafts were undissociated rods. In this way it was observed and hosts which rejected grafts possible to obtain 6 million chondrocytes were discarded. Grafts were observed at from 12 limb buds. Viability was greater the seventh day and then fixed for histo- than 85% as measured by eosin exclusion. logical analysis. For the preparation of flank mesen- thyme cells, stage 19 embryos were re- RESULTS moved and resected in the region between Mixtures of Stage I9 Mesoblast Cells the limbs. The resected fragments were and Stage 30 cartilage Cells immersed in trypsin and pancreatin solu- tion for 20 min, the ectoderm teased away All the reconstituted limbs showed some and the flank mesoderm freed from the outgrowth by 7 days after grafting.
Recommended publications
  • Wnt Signalling During Limb Development
    Int. J. Dev. Biol. 46: 927-936 (2002) Wnt signalling during limb development VICKI L. CHURCH and PHILIPPA FRANCIS-WEST* Department of Craniofacial Development, King’s College London, Guy’s Hospital, London, UK ABSTRACT Wnts control a number of processes during limb development - from initiating outgrowth and controlling patterning, to regulating cell differentiation in a number of tissues. Interactions of Wnt signalling pathway components with those of other signalling pathways have revealed new mechanisms of modulating Wnt signalling, which may explain how different responses to Wnt signalling are elicited in different cells. Given the number of Wnts that are expressed in the limb and their ability to induce differential responses, the challenge will be to dissect precisely how Wnt signalling is regulated and how it controls limb development at a cellular level, together with the other signalling pathways, to produce the functional limb capable of co- ordinated precise movements. KEY WORDS: Wnt, limb, development, chondrogenesis, myogenesis The Wnt Gene Family is found in the others (Cadigan and Nusse, 1997). The frizzled receptors can function together with the LRP co-receptors, which The Wnt family of secreted glycosylated factors consists of 22 are single transmembrane proteins containing LDL receptor re- members in vertebrates which have a range of functions during peats, two frizzled motifs and four EGF type repeats in the development from patterning individual structures to fine tuning at extracellular domain (reviewed by Pandur and Kühl, 2001; also see a cellular level controlling cell differentiation, proliferation and Roszmusz et al., 2001). The LRPs, which include the vertebrate survival. The founding members of this family are the Drosophila genes LRP4, -5 and -6 and the Drosophila gene arrow, form a segment polarity gene Wingless (Wg), required for wing develop- complex with frizzled in a Wnt-dependent manner and signal in the ment, together with Wnt1 (originally named int-1) in the mouse.
    [Show full text]
  • Development of the Endochondral Skeleton
    Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Development of the Endochondral Skeleton Fanxin Long1,2 and David M. Ornitz2 1Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 2Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110 Correspondence: fl[email protected] SUMMARY Much of the mammalian skeleton is composed of bones that originate from cartilage templates through endochondral ossification. Elucidating the mechanisms that control endochondral bone development is critical for understanding human skeletal diseases, injury response, and aging. Mouse genetic studies in the past 15 years have provided unprecedented insights about molecules regulating chondrocyte formation, chondrocyte maturation, and osteoblast differ- entiation, all key processes of endochondral bone development. These include the roles of the secreted proteins IHH, PTHrP, BMPs, WNTs, and FGFs, their receptors, and transcription factors such as SOX9, RUNX2, and OSX, in regulating chondrocyte and osteoblast biology. This review aims to integrate the known functions of extracellular signals and transcription factors that regulate development of the endochondral skeleton. Outline 1 Introduction 5 Osteoblastogenesis 2 Mesenchymal condensation 6 Closing remarks 3 Chondrocyte differentiation References 4 Growth plate development Editors: Patrick P.L. Tam, W. James Nelson, and Janet Rossant Additional Perspectives on Mammalian Development available at www.cshperspectives.org Copyright # 2013 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a008334 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a008334 1 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press F.
    [Show full text]
  • Sonic Hedgehog Signaling in Limb Development
    REVIEW published: 28 February 2017 doi: 10.3389/fcell.2017.00014 Sonic Hedgehog Signaling in Limb Development Cheryll Tickle 1* and Matthew Towers 2* 1 Department of Biology and Biochemistry, University of Bath, Bath, UK, 2 Department of Biomedical Science, The Bateson Centre, University of Sheffield, Western Bank, Sheffield, UK The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in Edited by: limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Andrea Erika Münsterberg, University of East Anglia, UK Currently there are several models for how Shh specifies positional values over time in the Reviewed by: limb buds of chick and mouse embryos and how this is integrated with growth. Extensive Megan Davey, work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it University of Edinburgh, UK Robert Hill, remains unclear how antero-posterior positional values are encoded and then interpreted University of Edinburgh, UK to give the particular structure appropriate to that position, for example, the type of digit.
    [Show full text]
  • The Roles of Fgfs in the Early Development of Vertebrate Limbs
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The roles of FGFs in the early development of vertebrate limbs Gail R. Martin1 Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94143–0452 USA ‘‘Fibroblast growth factor’’ (FGF) was first identified 25 tion of two closely related proteins—acidic FGF and ba- years ago as a mitogenic activity in pituitary extracts sic FGF (now designated FGF1 and FGF2, respectively). (Armelin 1973; Gospodarowicz 1974). This modest ob- With the advent of gene isolation techniques it became servation subsequently led to the identification of a large apparent that the Fgf1 and Fgf2 genes are members of a family of proteins that affect cell proliferation, differen- large family, now known to be comprised of at least 17 tiation, survival, and motility (for review, see Basilico genes, Fgf1–Fgf17, in mammals (see Coulier et al. 1997; and Moscatelli 1992; Baird 1994). Recently, evidence has McWhirter et al. 1997; Hoshikawa et al. 1998; Miyake been accumulating that specific members of the FGF 1998). At least five of these genes are expressed in the family function as key intercellular signaling molecules developing limb (see Table 1). The proteins encoded by in embryogenesis (for review, see Goldfarb 1996). Indeed, the 17 different FGF genes range from 155 to 268 amino it may be no exaggeration to say that, in conjunction acid residues in length, and each contains a conserved with the members of a small number of other signaling ‘‘core’’ sequence of ∼120 amino acids that confers a com- molecule families [including WNT (Parr and McMahon mon tertiary structure and the ability to bind heparin or 1994), Hedgehog (HH) (Hammerschmidt et al.
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Patterning Mechanisms Controlling Vertebrate Limb Development
    8 Sep 2001 13:46 AR AR139-4.tex AR139-4.SGM ARv2(2001/05/10) P1: GSR Annu. Rev. Cell Dev. Biol. 2001. 17:87–132 Copyright c 2001 by Annual Reviews. All rights reserved PATTERNING MECHANISMS CONTROLLING VERTEBRATE LIMB DEVELOPMENT Javier Capdevila and Juan Carlos Izpisua´ Belmonte The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037; e-mail: [email protected]; [email protected] Key Words AER, BMP, FGF, Hedgehog, limb, morphogen, pattern formation, regeneration, secreted factors, vertebrate development, WNT, ZPA ■ Abstract Vertebrate limb buds are embryonic structures for which much molecu- lar and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior- posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, spe- cific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways oper- ated by secreted factors of the HH, TGF-/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.
    [Show full text]
  • Wnt/ß-Catenin Signaling Regulates Vertebrate Limb Regeneration
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION ␤ epithelia that, like the regenerating AEC, is required for Wnt/ -catenin signaling the proliferation of mesenchymal cells, and therefore for regulates vertebrate limb normal limb development. Here we show that reduction in Wnt and BMP signaling during limb regeneration in regeneration axolotls, Xenopus laevis, and zebrafish induce alter- ations in the formation of the AEC that prevent normal 1 Yasuhiko Kawakami, Concepción Rodriguez fin/limb regeneration. More importantly, by performing Esteban,1 Marina Raya,2 Hiroko Kawakami,1 gain of function experiments of the Wnt/␤-catenin path- Merce`Martı´,2 Ilir Dubova,1,2 and way during appendage regeneration, we demonstrate Juan Carlos Izpisúa Belmonte1,2,3 that this pathway promotes Xenopus and zebrafish limb/ fin regeneration. The ability of this pathway to promote 1Gene Expression Laboratory, The Salk Institute for Biological regeneration is not only restricted to normally regener- Studies, La Jolla, California 92037, USA; 2Center for ating organisms, since activation of Wnt signaling during Regenerative Medicine of Barcelona, 08003 Barcelona, Spain limb development in the chick embryo enables regenera- tion of the AER. While obviously not identical processes, The cellular and molecular bases allowing tissue regen- the similarities encountered in the molecular and cellu- eration are not well understood. By performing gain- and lar processes involved during limb embryogenesis and loss-of-function experiments of specific members of the limb regeneration suggest a mechanism whereby varia- Wnt pathway during appendage regeneration, we dem- tions in the concentration and/or spatiotemporal distri- onstrate that this pathway is not only necessary for re- bution of developmental regulators may allow regenera- tion to occur.
    [Show full text]
  • 8. Limb Development
    8. LIMB DEVELOPMENT Dr. Ann-Judith Silverman Department of Anatomy & Cell Biology Telephone: 212 305-3540 E-mail: [email protected] RECOMMENDED READING: Larsen’s Human Embryology, 3rd Edition, pages 315-328, 335-342 LEARNING OBJECTIVES: You should be able to: 1. Compare the contribution made by lateral plate (somatopleure) mesoderm and somitic (paraxial) mesoderm to the formation of the limb. 2. Follow the consequence of limb rotation on the innervation pattern of adult limbs. 3. Discuss the signaling mechanisms between the zone of polarizing activity and the apical ectodermal ridge in the anterior-posterior patterning of hand. 4. Describe the novel biochemistry whereby sonic hedgehog establishes a concentration gradient in the limb. GLOSSARY: Apical ectodermal ridge (AER) - most distal rim of epithelium of the limb bud. It is a major signalling center in regulating patterning of the limb and apoptosis in underlying mesoderm (see lecture on Apoptosis). Fibroblast growth factor (FGF) - FGF-4, a secreted protein from the AER overlying the ZPA, regu- lates the expression of SHH. Induction: the change in a cell or tissue’s fate due to a signal from another tissue or cell. Morphogen: A secreted molecule that regulates induction. A concentration gradient of the molecule is frequently established. Progress Zone (PZ) - mesoderm below AER where cellular proliferation takes place. Sonic hedgehog (SHH)- a member of the “hedgehog family” of secreted signalling proteins. SHH is made by the ZPA (below) and regulates anterior/poterior patterning. Zone of Polarizing Activity (ZPA) - mesenchyme just below the AER on the posterior boundary of the limb bud. Major signalling center for the regulation of anterior/posterior patterning.
    [Show full text]
  • Determining the Role of Wnt5a Signaling in Embryonic Limb Outgrowth Via Clonal Analysis
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2008-08-14 Determining the Role of Wnt5a Signaling in Embryonic Limb Outgrowth via Clonal Analysis Whitney Herrod Sowby Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Cell and Developmental Biology Commons, and the Physiology Commons BYU ScholarsArchive Citation Sowby, Whitney Herrod, "Determining the Role of Wnt5a Signaling in Embryonic Limb Outgrowth via Clonal Analysis" (2008). Theses and Dissertations. 1638. https://scholarsarchive.byu.edu/etd/1638 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. DETERMINING THE ROLE OF WNT5A IN EMBRYONIC LIMB OUTGROWTH VIA CLONAL ANALYSIS by Whitney Herrod Sowby A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Physiology and Developmental Biology Brigham Young University December 2008 Copyright © 2008 Whitney Herrod Sowby All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Whitney Herrod Sowby This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date Jeffery R. Barrow, Chair Date Michael R. Stark Date Laura C. Bridgewater BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Whitney Herrod Sowby in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.
    [Show full text]
  • Hedgehog and Wnt Coordinate Signaling in Myogenic Progenitors and Regulate Limb Regeneration
    Developmental Biology 371 (2012) 23–34 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration Bhairab N. Singh, Michelle J. Doyle, Cyprian V. Weaver, Naoko Koyano-Nakagawa, Daniel J. Garry n Lillehei Heart Institute, University of Minnesota, 420 Delaware Street, SE. MMC508, Minneapolis, MN 55455, USA article info abstract Article history: Amphibians have a remarkable capacity for limb regeneration. Following a severe injury, there is Received 30 March 2012 complete regeneration with restoration of the patterning and cellular architecture of the amputated Received in revised form limb. While studies have focused on the structural anatomical changes during amphibian limb 28 July 2012 regeneration, the signaling mechanisms that govern cellular dedifferentiation and blastemal progeni- Accepted 30 July 2012 tors are unknown. Here, we demonstrate the temporal and spatial requirement for hedgehog (Hh) Available online 10 August 2012 signaling and its hierarchical correlation with respect to Wnt signaling during newt limb regeneration. Keywords: While the dedifferentiation process of mature lineages does not depend on Hh signaling, the Regeneration proliferation and the migration of the dedifferentiated cells are dependent on Hh signaling. Temporally Blastema controlled chemical inactivation of the Hh pathway indicates that Hh-mediated antero-posterior (AP) Signaling pathways specification occurs early during limb regeneration and that Hh is subsequently required for expansion Dedifferentiation of the blastemal progenitors. Inhibition of Hh signaling results in G0/G1 arrest with a concomitant reduction in S-phase and G2/M population in myogenic progenitors. Furthermore, Hh inhibition leads to reduced Pax7-positive cells and fewer regenerating fibers relative to control tissue.
    [Show full text]
  • Development: Sonic Snakes and Regulation of Limb Formation
    RESEARCH HIGHLIGHTS Nature Reviews Genetics | Published online 15 Nov 2016; doi:10.1038/nrg.2016.149 DEVELOPMENT Sonic snakes and regulation of limb formation Evolutionary limb loss is a funda- expression in the zone of polarizing Leal and Cohn identified three mental and overt change in body activity in developing limbs, deletions at the 5ʹ end of the ZRS plan, but the underlying molecular this activity is progressively lost in that occur in snakes but not limbed causes have remained debated and ZRS sequences from basal through vertebrates; the middle deletion largely elusive. Two new studies to advanced snakes. Furthermore, is the same 17 bp deletion studied pinpoint enhancer alterations knock-in to replace a 1.3 kb core by Kvon et al. They showed using associated with limb loss during region of mouse ZRS with the equiv- engineered expression constructs in snake evolution. alent sequence from python (a basal cell culture that each deletion reduces Mechanisms of major morpholog- snake) resulted in mice with partially enhancer activity (although effects on ical transitions have been challenging truncated limbs, and replacement limb development in vivo were not to elucidate. The continued presence with the sequence from cobra (an explicitly tested). Although Leal and of known gene families for limb advanced snake) caused substantially Cohn note loss of an ETS binding formation in limbless organisms such more severe limb truncations. site caused by the 17 bp deletion, as snakes, as well as fossil indications For further mechanistic insight, their co-expression experiments and that limbless species might retain the Kvon et al.
    [Show full text]
  • Embryology 1 Yen Hsun Chen and Aaron Daluiski
    Embryology 1 Yen Hsun Chen and Aaron Daluiski Contents Abstract Introduction .......................................... 4 Developmental biology has greatly contributed to the understanding of upper limb develop- Molecular Events of the Developing ment. Whereas early understanding of limb Upper Limb .......................................... 4 development centered on morphological First Phase: Early Development change during organogenesis, current empha- and Limb Identity .................................... 7 sis is on discovery of molecular signaling Second Phase: Limb Patterning mechanisms that drive the remarkable transfor- and Initial Growth ................................... 8 Proximodistal (PD) .................................... 8 mation of single cells into fully functioning Anteroposterior (AP) .................................. 10 limbs and the human body. These discoveries Dorsoventral (DV) ... ................................. 13 have laid a foundation for fundamental Coordination Between Axes .......................... 15 embryology-based concepts that have Third Phase: Tissue Differentiation ................ 19 reshaped the way congenital limb differences Vascular System ....................................... 19 are conceptualized, with the ability to trace a Nervous System ....................................... 19 phenotype back to single genes, and, con- Musculoskeletal System . .. .. .. .. .. .. .. .. .. 20 versely, the ability to predict developmental Extrinsic Factors ..................................... 20 differences
    [Show full text]