Proximal to Distal Patterning During Limb Development and Regeneration: a Review of Converging Disciplines

Total Page:16

File Type:pdf, Size:1020Kb

Proximal to Distal Patterning During Limb Development and Regeneration: a Review of Converging Disciplines Review For reprint orders, please contact: [email protected] Proximal to distal patterning during limb development and regeneration: a review of converging disciplines Regeneration of lost structures typically involves distinct events: wound healing at the damaged site, the accumulation of cells that will be used as future building blocks and, finally, the initiation of molecular signaling pathways that dictate the form and pattern of the regenerated structures. Amphibians and urodeles in particular, have long been known to have exceptional regenerative properties. For many years, these animals have been the model of choice for understanding limb regeneration, a complex process that involves reconstructing skin, muscle, bone, connective tissue and nerves into a functional 3D structure. It appears that this process of rebuilding an adult limb has many similarities with how the limb forms in the first place – for example, in the embryo, all the components of the limb need to be formed and this requires signaling mechanisms to specify the final pattern. Thus, both limb formation and limb regeneration are likely to employ the same molecular pathways. Given the available tools of molecular biology and genetics, this is an exciting time for both fields to share findings and make significant progress in understanding more about the events that dictate embryonic limb pattern and control limb regeneration. This article focuses particularly on what is known about the molecular control of patterning along the proximal–distal axis. KEYWORDS: blastema digit limb development limb regeneration Francesca V Mariani proximal–distal patterning stem cell Eli & Edythe Broad Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, Limb development & regeneration shell that, in tetrapods (but not fish), forms a University of Southern California, 1450 Biggy Street, NRT-4505, Over 250 years ago, the dedicated Italian sci- thickening at the distal tip called the apical Los Angeles, CA 90033-9601, USA entist, Lazzaro Spallanzani, first described the ectodermal ridge (AER). The AER is a site of Tel.: +1 323 442 7855 ability of urodeles (salamanders) to regenerate expression for a number of growth factors that Fax: +1 323 442 7899 [email protected] appendages [1]. Since that time, scientists have are actively being studied for their role in limb been fascinated by the idea that our organs and bud outgrowth and patterning [4,5]. As cells in appendages may have the capacity to regener- the underlying mesenchyme proliferate, the ate, and hope for a time when regeneration can bud enlarges. Next, some of the cells differen- be enhanced in the clinic. A tremendous effort tiate into chondrocytes that coalesce into con- will be required to understand regenerative densations. Interestingly, these condensations processes in such a way that patients can truly are arranged in a pattern that prefigures the benefit. Interestingly, while it is clear that there different skeletal elements. The condensations are some essential differences between limb elaborate, grow and, subsequently, differenti- regeneration and how they form during embry- ate into cartilage. The cartilage then serves as onic development, recent studies suggest that a ‘template’ for the later differentiation into both processes share a basic molecular ‘toolkit’. bone, a process called endochondral bone for- Indeed, regeneration may involve the reactiva- mation. The limb mesenchyme will differenti- tion of the developmental program to generate ate into chondrocytes and connective tissues missing structures [2,3]. Perhaps if we can learn (tendons and muscle sheath), while muscle, more about this toolkit using modern molecu- blood vessels and nerves develop from cells that lar and genetic techniques, it will be possible, migrate into the limb bud from other locations one day, to stimulate appendage regeneration in the embryo. in humans. Limb regeneration Limb development In general, vertebrates have a limited ability to The vertebrate limb typically develops dur- regenerate, with urodeles, fish and premeta- ing mid-gestation as a bud of mesenchyme morphosing frogs being the only vertebrates that protrudes from the flank of the embryo known to regenerate a complete appendage. (Figure 1A). This bud is encased in an epithelial Amphibian limb regeneration can be most 10.2217/RME.10.27 © 2010 Future Medicine Ltd Regen. Med. (2010) 5(3), 451–462 ISSN 1746-0751 451 Review Mariani Limb development Bud formation AER formation Bud outgrowth Chondrocyte Cartilage formation and patterning condensation, morphogenesis Limb regeneration Urodeles Injury Wound healing and Blastema formation Chondrocyte Cartilage formation AEC formation and growth condensation, morphogenesis Mammals Injury Wound healing Growth and Regenerated bone local proliferation Limb skeletal morphology ` l ximal ` Dista Pro Stylopod Zeugopod Autopod Figure 1. The steps of limb development and regeneration compared. (A) Limb development. (B) Limb regeneration in urodeles and digit-tip regeneration in mammals. After wound healing, the first similarity is the formation of a epithelium at the distal tip. This epithelium is called the AER during development and the AEC during regeneration. Within both the limb-bud mesenchyme and the regenerating blastema, cells proliferate, acquire positional information and respond to inductive signals. The cells differentiate and become organized to form the limb elements. During both limb development and regeneration in salamanders, cartilage prefigures the formation of bone. In mouse digit-tip regeneration, bone forms directly. (C) Final skeletal morphology of a human limb with the three limb segments color coded: stylopod (gray), zeugopod (yellow) and autopod (purple). The proximal and distal axis is indicated. AEC: Apical epithelial cap; AER: Apical ectodermal ridge. easily described as a series of defined events (out- through the process of patterning, chondrocyte lined in Figure 1B). After an injury occurs, there condensation, cartilage formation and bone is an immediate clotting response and the mobi- deposition [2,6,7]. Interestingly, the site of injury lization of the immune cells involved in wound can occur at any proximal to distal (P–D) loca- healing. Very quickly, epithelial cells cover over tion along the limb and the cells in the blastema the wound area and form a thickened structure faithfully replace the missing parts. called the apical epithelial cap (AEC), a struc- ture that is probably analogous to the AER in the What are the questions in the developing limb bud. Underneath the AEC, cells regeneration field? with an undifferentiated or mesenchymal mor- In the mid-1980s, Stocum outlined the central phology accumulate to form a structure called questions in the field of limb regeneration [6] the blastema. Like cells in the developing limb and, although some progress has been made, bud, cells in the blastema proliferate and eventu- these central questions are still unanswered and ally undergo differentiation and morphogenesis have been recast here in modern terms. 452 Regen. Med. (2010) 5(3) future science group Proximal to distal patterning during limb development & regeneration Review The first question concerns the origin of P–D patterning: three models the blastema cells. Where do these cells come to consider from? Do they originate from differentiated The Progress Zone Model skeletal, connective tissue and muscle cells in Currently, there are three models for how P–D the remaining stump? If so, do they dediffer- patterning information might be acquired and entiate to revert to a stem cell or embryonic interpreted either during limb development or state? Alternatively, are the blastema cells regeneration: the Progress Zone Model, the derived from resident stem cell populations in Early-specification Model and the Two-signal the adult stump that then move into the blas- Model (Figure 2). For many years, the Progress tema and build new structures? Related to these Zone Model, proposed by Lewis Wolpert [21], questions is the issue of whether or not cells in has been the prevailing framework for explain- the blastema are multipotent cells or are already ing how the limb develops. This model proposes restricted in potential. These are active research that a special region of defined size, called the questions [8] and the answers will be of great progress zone, exists in the distal mesenchyme. interest to the field. Wolpert and colleagues postulated that cells in The second central question, and the focus of this zone are under the influence of the AER, this article, concerns the patterning of the blas- which plays a ‘permissive’ rather than ‘instruc- tema, a structure that appears to have similari- tive’ role, meaning the AER does not impart pat- ties to the embryonic limb bud. What signals terning information to the cells but keeps the instruct the blastema cells to rebuild the missing cells ‘labile’ and able to change positional infor- parts of the limb so that the regenerated struc- mation. The cells are also proposed to be able ture has the correct patterning, morphology and to ‘mark time’ as they are within the progress polarity? Where do these signals come from? zone and become more ‘distalized’ the longer Do cells at the cut edge retain some informa- they reside in the zone. Therefore, as the limb tion that can be conveyed to the new structures bud expands, the first cells to leave the progress as they form? For convenience, the vertebrate zone are the least distalized and postulated to limb can be described as having three axes: contribute to proximal structures. Cells that an anterior–posterior axis (thumb to pinky), leave the progress zone last contribute to distal a dorsal–ventral axis (back of the hand to the structures as they have resided the longest in the palm) and a P–D axis (base of the limb to tip progress zone and are, therefore, the most distal- of the finger). The P–D axis can be further ized. Thus, the Progress Zone Model proposes divided into three different segments: a most that the P–D axis of the limb becomes specified proximal element (stylopod or upper arm/leg), a in a P–D direction through time.
Recommended publications
  • Wnt Signalling During Limb Development
    Int. J. Dev. Biol. 46: 927-936 (2002) Wnt signalling during limb development VICKI L. CHURCH and PHILIPPA FRANCIS-WEST* Department of Craniofacial Development, King’s College London, Guy’s Hospital, London, UK ABSTRACT Wnts control a number of processes during limb development - from initiating outgrowth and controlling patterning, to regulating cell differentiation in a number of tissues. Interactions of Wnt signalling pathway components with those of other signalling pathways have revealed new mechanisms of modulating Wnt signalling, which may explain how different responses to Wnt signalling are elicited in different cells. Given the number of Wnts that are expressed in the limb and their ability to induce differential responses, the challenge will be to dissect precisely how Wnt signalling is regulated and how it controls limb development at a cellular level, together with the other signalling pathways, to produce the functional limb capable of co- ordinated precise movements. KEY WORDS: Wnt, limb, development, chondrogenesis, myogenesis The Wnt Gene Family is found in the others (Cadigan and Nusse, 1997). The frizzled receptors can function together with the LRP co-receptors, which The Wnt family of secreted glycosylated factors consists of 22 are single transmembrane proteins containing LDL receptor re- members in vertebrates which have a range of functions during peats, two frizzled motifs and four EGF type repeats in the development from patterning individual structures to fine tuning at extracellular domain (reviewed by Pandur and Kühl, 2001; also see a cellular level controlling cell differentiation, proliferation and Roszmusz et al., 2001). The LRPs, which include the vertebrate survival. The founding members of this family are the Drosophila genes LRP4, -5 and -6 and the Drosophila gene arrow, form a segment polarity gene Wingless (Wg), required for wing develop- complex with frizzled in a Wnt-dependent manner and signal in the ment, together with Wnt1 (originally named int-1) in the mouse.
    [Show full text]
  • Development of the Endochondral Skeleton
    Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Development of the Endochondral Skeleton Fanxin Long1,2 and David M. Ornitz2 1Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 2Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110 Correspondence: fl[email protected] SUMMARY Much of the mammalian skeleton is composed of bones that originate from cartilage templates through endochondral ossification. Elucidating the mechanisms that control endochondral bone development is critical for understanding human skeletal diseases, injury response, and aging. Mouse genetic studies in the past 15 years have provided unprecedented insights about molecules regulating chondrocyte formation, chondrocyte maturation, and osteoblast differ- entiation, all key processes of endochondral bone development. These include the roles of the secreted proteins IHH, PTHrP, BMPs, WNTs, and FGFs, their receptors, and transcription factors such as SOX9, RUNX2, and OSX, in regulating chondrocyte and osteoblast biology. This review aims to integrate the known functions of extracellular signals and transcription factors that regulate development of the endochondral skeleton. Outline 1 Introduction 5 Osteoblastogenesis 2 Mesenchymal condensation 6 Closing remarks 3 Chondrocyte differentiation References 4 Growth plate development Editors: Patrick P.L. Tam, W. James Nelson, and Janet Rossant Additional Perspectives on Mammalian Development available at www.cshperspectives.org Copyright # 2013 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a008334 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a008334 1 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press F.
    [Show full text]
  • Sonic Hedgehog Signaling in Limb Development
    REVIEW published: 28 February 2017 doi: 10.3389/fcell.2017.00014 Sonic Hedgehog Signaling in Limb Development Cheryll Tickle 1* and Matthew Towers 2* 1 Department of Biology and Biochemistry, University of Bath, Bath, UK, 2 Department of Biomedical Science, The Bateson Centre, University of Sheffield, Western Bank, Sheffield, UK The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in Edited by: limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Andrea Erika Münsterberg, University of East Anglia, UK Currently there are several models for how Shh specifies positional values over time in the Reviewed by: limb buds of chick and mouse embryos and how this is integrated with growth. Extensive Megan Davey, work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it University of Edinburgh, UK Robert Hill, remains unclear how antero-posterior positional values are encoded and then interpreted University of Edinburgh, UK to give the particular structure appropriate to that position, for example, the type of digit.
    [Show full text]
  • Of Limb Morphogenesis in a Model System
    DEVELOPMENTAL BIOLOGY 28, 113-122 (1972) Analysis of Limb Morphogenesis in a Model System ROBERT H. SINGER’. 2 Department of Biology, Brandeis University, Waltham, Massachusetts Accepted January 27, 1972 A method for analysis of chicken limb morphogenesis was devised. This method consisted of grafting a limb ectodermal jacket containing dissociated and pelleted mesenchymal cellular com- ponents to the host somites. Different cellular components stuffed into the ectoderm could be mixed in varied ratios. After 7 days the grafts were analyzed for outgrowth. Stage 19 mesoblast cells alone when treated as above gave limblike outgrowths with good digits, toes, and claws in all cases. However, mesoblasts from the proximal half of older limbs (stages 24, 25 and chondro- cytes) gave no outgrowths, and those from stage 23 gave outgrowths in 9% of the cases. In mixtures of 5% stage 19 cells with 95% chondrocytes, consistent morphogenesis (i.e., in 65% of grafts) oc- curred. The amount of morphogenesis (size of graft and perfection of digits) was directly propor- tional to the amount of stage 19 cells. However, these cells mixed with proximal cells of stages 23, 24, or 25 required higher proportions for equivalent morphogenesis. To obtain morphogenesis equivalent to the 5% mixture with chondrocytes, 10% stage 19 cells were needed when mixed with proximal stage 23, 25% with proximal stage 24 and 7% with proximal stage 25. Mixtures of stage 19 cells added to nonlimb (flank, stage- 19) mesoderm, formed large tumorous mounds of tissue with no limblike features. INTRODUCTION ectoderm ridge serves as a specific induc- The limb bud presents a good model of tive structure initiating and directing out- a developing system.
    [Show full text]
  • The Roles of Fgfs in the Early Development of Vertebrate Limbs
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The roles of FGFs in the early development of vertebrate limbs Gail R. Martin1 Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94143–0452 USA ‘‘Fibroblast growth factor’’ (FGF) was first identified 25 tion of two closely related proteins—acidic FGF and ba- years ago as a mitogenic activity in pituitary extracts sic FGF (now designated FGF1 and FGF2, respectively). (Armelin 1973; Gospodarowicz 1974). This modest ob- With the advent of gene isolation techniques it became servation subsequently led to the identification of a large apparent that the Fgf1 and Fgf2 genes are members of a family of proteins that affect cell proliferation, differen- large family, now known to be comprised of at least 17 tiation, survival, and motility (for review, see Basilico genes, Fgf1–Fgf17, in mammals (see Coulier et al. 1997; and Moscatelli 1992; Baird 1994). Recently, evidence has McWhirter et al. 1997; Hoshikawa et al. 1998; Miyake been accumulating that specific members of the FGF 1998). At least five of these genes are expressed in the family function as key intercellular signaling molecules developing limb (see Table 1). The proteins encoded by in embryogenesis (for review, see Goldfarb 1996). Indeed, the 17 different FGF genes range from 155 to 268 amino it may be no exaggeration to say that, in conjunction acid residues in length, and each contains a conserved with the members of a small number of other signaling ‘‘core’’ sequence of ∼120 amino acids that confers a com- molecule families [including WNT (Parr and McMahon mon tertiary structure and the ability to bind heparin or 1994), Hedgehog (HH) (Hammerschmidt et al.
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Patterning Mechanisms Controlling Vertebrate Limb Development
    8 Sep 2001 13:46 AR AR139-4.tex AR139-4.SGM ARv2(2001/05/10) P1: GSR Annu. Rev. Cell Dev. Biol. 2001. 17:87–132 Copyright c 2001 by Annual Reviews. All rights reserved PATTERNING MECHANISMS CONTROLLING VERTEBRATE LIMB DEVELOPMENT Javier Capdevila and Juan Carlos Izpisua´ Belmonte The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037; e-mail: [email protected]; [email protected] Key Words AER, BMP, FGF, Hedgehog, limb, morphogen, pattern formation, regeneration, secreted factors, vertebrate development, WNT, ZPA ■ Abstract Vertebrate limb buds are embryonic structures for which much molecu- lar and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior- posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, spe- cific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways oper- ated by secreted factors of the HH, TGF-/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.
    [Show full text]
  • Wnt/ß-Catenin Signaling Regulates Vertebrate Limb Regeneration
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION ␤ epithelia that, like the regenerating AEC, is required for Wnt/ -catenin signaling the proliferation of mesenchymal cells, and therefore for regulates vertebrate limb normal limb development. Here we show that reduction in Wnt and BMP signaling during limb regeneration in regeneration axolotls, Xenopus laevis, and zebrafish induce alter- ations in the formation of the AEC that prevent normal 1 Yasuhiko Kawakami, Concepción Rodriguez fin/limb regeneration. More importantly, by performing Esteban,1 Marina Raya,2 Hiroko Kawakami,1 gain of function experiments of the Wnt/␤-catenin path- Merce`Martı´,2 Ilir Dubova,1,2 and way during appendage regeneration, we demonstrate Juan Carlos Izpisúa Belmonte1,2,3 that this pathway promotes Xenopus and zebrafish limb/ fin regeneration. The ability of this pathway to promote 1Gene Expression Laboratory, The Salk Institute for Biological regeneration is not only restricted to normally regener- Studies, La Jolla, California 92037, USA; 2Center for ating organisms, since activation of Wnt signaling during Regenerative Medicine of Barcelona, 08003 Barcelona, Spain limb development in the chick embryo enables regenera- tion of the AER. While obviously not identical processes, The cellular and molecular bases allowing tissue regen- the similarities encountered in the molecular and cellu- eration are not well understood. By performing gain- and lar processes involved during limb embryogenesis and loss-of-function experiments of specific members of the limb regeneration suggest a mechanism whereby varia- Wnt pathway during appendage regeneration, we dem- tions in the concentration and/or spatiotemporal distri- onstrate that this pathway is not only necessary for re- bution of developmental regulators may allow regenera- tion to occur.
    [Show full text]
  • 8. Limb Development
    8. LIMB DEVELOPMENT Dr. Ann-Judith Silverman Department of Anatomy & Cell Biology Telephone: 212 305-3540 E-mail: [email protected] RECOMMENDED READING: Larsen’s Human Embryology, 3rd Edition, pages 315-328, 335-342 LEARNING OBJECTIVES: You should be able to: 1. Compare the contribution made by lateral plate (somatopleure) mesoderm and somitic (paraxial) mesoderm to the formation of the limb. 2. Follow the consequence of limb rotation on the innervation pattern of adult limbs. 3. Discuss the signaling mechanisms between the zone of polarizing activity and the apical ectodermal ridge in the anterior-posterior patterning of hand. 4. Describe the novel biochemistry whereby sonic hedgehog establishes a concentration gradient in the limb. GLOSSARY: Apical ectodermal ridge (AER) - most distal rim of epithelium of the limb bud. It is a major signalling center in regulating patterning of the limb and apoptosis in underlying mesoderm (see lecture on Apoptosis). Fibroblast growth factor (FGF) - FGF-4, a secreted protein from the AER overlying the ZPA, regu- lates the expression of SHH. Induction: the change in a cell or tissue’s fate due to a signal from another tissue or cell. Morphogen: A secreted molecule that regulates induction. A concentration gradient of the molecule is frequently established. Progress Zone (PZ) - mesoderm below AER where cellular proliferation takes place. Sonic hedgehog (SHH)- a member of the “hedgehog family” of secreted signalling proteins. SHH is made by the ZPA (below) and regulates anterior/poterior patterning. Zone of Polarizing Activity (ZPA) - mesenchyme just below the AER on the posterior boundary of the limb bud. Major signalling center for the regulation of anterior/posterior patterning.
    [Show full text]
  • Determining the Role of Wnt5a Signaling in Embryonic Limb Outgrowth Via Clonal Analysis
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2008-08-14 Determining the Role of Wnt5a Signaling in Embryonic Limb Outgrowth via Clonal Analysis Whitney Herrod Sowby Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Cell and Developmental Biology Commons, and the Physiology Commons BYU ScholarsArchive Citation Sowby, Whitney Herrod, "Determining the Role of Wnt5a Signaling in Embryonic Limb Outgrowth via Clonal Analysis" (2008). Theses and Dissertations. 1638. https://scholarsarchive.byu.edu/etd/1638 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. DETERMINING THE ROLE OF WNT5A IN EMBRYONIC LIMB OUTGROWTH VIA CLONAL ANALYSIS by Whitney Herrod Sowby A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Physiology and Developmental Biology Brigham Young University December 2008 Copyright © 2008 Whitney Herrod Sowby All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Whitney Herrod Sowby This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date Jeffery R. Barrow, Chair Date Michael R. Stark Date Laura C. Bridgewater BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Whitney Herrod Sowby in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.
    [Show full text]
  • Hedgehog and Wnt Coordinate Signaling in Myogenic Progenitors and Regulate Limb Regeneration
    Developmental Biology 371 (2012) 23–34 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration Bhairab N. Singh, Michelle J. Doyle, Cyprian V. Weaver, Naoko Koyano-Nakagawa, Daniel J. Garry n Lillehei Heart Institute, University of Minnesota, 420 Delaware Street, SE. MMC508, Minneapolis, MN 55455, USA article info abstract Article history: Amphibians have a remarkable capacity for limb regeneration. Following a severe injury, there is Received 30 March 2012 complete regeneration with restoration of the patterning and cellular architecture of the amputated Received in revised form limb. While studies have focused on the structural anatomical changes during amphibian limb 28 July 2012 regeneration, the signaling mechanisms that govern cellular dedifferentiation and blastemal progeni- Accepted 30 July 2012 tors are unknown. Here, we demonstrate the temporal and spatial requirement for hedgehog (Hh) Available online 10 August 2012 signaling and its hierarchical correlation with respect to Wnt signaling during newt limb regeneration. Keywords: While the dedifferentiation process of mature lineages does not depend on Hh signaling, the Regeneration proliferation and the migration of the dedifferentiated cells are dependent on Hh signaling. Temporally Blastema controlled chemical inactivation of the Hh pathway indicates that Hh-mediated antero-posterior (AP) Signaling pathways specification occurs early during limb regeneration and that Hh is subsequently required for expansion Dedifferentiation of the blastemal progenitors. Inhibition of Hh signaling results in G0/G1 arrest with a concomitant reduction in S-phase and G2/M population in myogenic progenitors. Furthermore, Hh inhibition leads to reduced Pax7-positive cells and fewer regenerating fibers relative to control tissue.
    [Show full text]
  • Development: Sonic Snakes and Regulation of Limb Formation
    RESEARCH HIGHLIGHTS Nature Reviews Genetics | Published online 15 Nov 2016; doi:10.1038/nrg.2016.149 DEVELOPMENT Sonic snakes and regulation of limb formation Evolutionary limb loss is a funda- expression in the zone of polarizing Leal and Cohn identified three mental and overt change in body activity in developing limbs, deletions at the 5ʹ end of the ZRS plan, but the underlying molecular this activity is progressively lost in that occur in snakes but not limbed causes have remained debated and ZRS sequences from basal through vertebrates; the middle deletion largely elusive. Two new studies to advanced snakes. Furthermore, is the same 17 bp deletion studied pinpoint enhancer alterations knock-in to replace a 1.3 kb core by Kvon et al. They showed using associated with limb loss during region of mouse ZRS with the equiv- engineered expression constructs in snake evolution. alent sequence from python (a basal cell culture that each deletion reduces Mechanisms of major morpholog- snake) resulted in mice with partially enhancer activity (although effects on ical transitions have been challenging truncated limbs, and replacement limb development in vivo were not to elucidate. The continued presence with the sequence from cobra (an explicitly tested). Although Leal and of known gene families for limb advanced snake) caused substantially Cohn note loss of an ETS binding formation in limbless organisms such more severe limb truncations. site caused by the 17 bp deletion, as snakes, as well as fossil indications For further mechanistic insight, their co-expression experiments and that limbless species might retain the Kvon et al.
    [Show full text]