Lynx Species Assessment (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Lynx Species Assessment (PDF) Canada Lynx Assessment Maine Department of Inland Fisheries and Wildlife Research and Assessment Section Bangor, ME 04401 Jennifer Vashon, Scott McLellan, Shannon Crowley, Amy Meehan and Ken Laustsen1 July 2012 1Maine Forest Service , Augusta, Maine MDIFW Canada Lynx Assessment TABLE OF CONTENTS INTRODUCTION............................................................................................................. 8 NATURAL HISTORY....................................................................................................... 9 Description............................................................................................................ 9 Distribution.......................................................................................................... 10 Food Habits ........................................................................................................ 11 Population Cycles............................................................................................... 13 Population Densities........................................................................................... 14 Habitat Use......................................................................................................... 15 Home Range ...................................................................................................... 16 Reproduction and Reproductive Behavior .......................................................... 17 Mortality.............................................................................................................. 19 Kitten Survival..................................................................................................... 21 Dispersal and Long Distance Movements .......................................................... 21 Social Interactions .............................................................................................. 22 Disease .............................................................................................................. 23 Limiting Factors .................................................................................................. 24 MANAGEMENT ............................................................................................................ 28 Bounties ............................................................................................................. 28 State Management and Monitoring Efforts ......................................................... 28 Federal Status .................................................................................................... 35 Incidental Catch.................................................................................................. 38 Lawsuits ............................................................................................................. 42 HABITAT ....................................................................................................................... 43 Overview ............................................................................................................ 43 Past Habitat........................................................................................................ 45 Presettlement........................................................................................... 45 European Settlement ............................................................................... 46 Forest Inventories (1959-2003)................................................................ 47 Current Habitat ................................................................................................... 50 Future Habitat..................................................................................................... 53 POPULATION ............................................................................................................... 56 Overview ............................................................................................................ 56 Past Populations................................................................................................. 56 Current Populations............................................................................................ 58 Future Populations ............................................................................................. 59 2 MDIFW Canada Lynx Assessment USE AND DEMAND...................................................................................................... 61 Past Use and Demand ....................................................................................... 61 Current Use and Demand................................................................................... 62 Nonconsumptive Use............................................................................... 62 Consumptive Use .................................................................................... 62 Nuisance Control ..................................................................................... 62 Use and Demand Projections............................................................................. 63 SUMMARY AND CONCLUSION .................................................................................. 64 LITERATURE CITED .................................................................................................... 66 3 MDIFW Canada Lynx Assessment LIST OF TABLES Table 1.1. Winter snowshoe hare densities (hares/2.5 acres) in Maine based on fecal plots (Scott 2009).................................................................................................. 14 Table 1.2. Lynx mortality (≥1 years old) and productivity (litters/adult female) in a northern Maine study area and associated hare densities in regenerating conifer sapling clearcuts (CC), and shelterwood/overstory removals (SHW/OR)...................... 18 Table 1.3. Lynx reproductive rates at the southern edge of their range, when hares are abundant, are similar to northern lynx populations........................................ 19 Table 1.4. Summary of lynx mortalities between 1999 and 2010 on a northern Maine study area........................................................................................................... 20 Table 1.5. Proportion of adult females traveling with at least one kitten in January and February and number of kittens that survived until at least February in northern Maine between 1999 and 2009. .................................................................. 21 Table 2.1. Records of the wildcat bounty in Maine did not separate lynx from bobcat. Between 1832 and 1967, the number of wildcats (lynx and bobcats) presented for bounty ranged from 61 to 1,857 with bounty payments ranging from 1.00 to 20.00 dollars...................................................................................................... 29 Table 2.2. Summary of state and federal management actions for lynx in Maine 1832 to present. ............................................................................................................ 31 Table 2.3. Summary of illegal and incidental take of lynx in Maine. ............................. 40 Table 3.1. Hierarchy of lynx habitat conditions in northern Maine. ............................... 45 Table 3.2. Estimates of past lynx habitat (acres) by biophysical region and lynx range in Maine from 1982, 1995, and 2003................................................................... 49 Table 3.3. Comparison of forest conditions (acres) in northern Maine during different forest inventory periods. .................................................................................. 50 Table 3.4. Estimates of current lynx habitat (acres) in northern Maine from 2006 Maine Forest Inventory and analysis by biophysical region. ......................................... 52 Table 4.1. Estimated adult lynx population size and acres of regenerating spruce/fir forest in 5 biophysical regions in northern Maine........................................... 58 4 MDIFW Canada Lynx Assessment LIST OF FIGURES Figure 1.1. Canada lynx (left) are distinguished from bobcats (right) by longer ear tufts and facial ruff, shorter and completely black-tipped tail, large feet, and more uniform coat color (less spotted, buff colored hind legs, grey underbelly).............. 9 Figure 1.2. Geographic range of Canada lynx from Chermundy IUCN Red List. ......... 10 Figure 1.3. Observations of lynx from historical records (1830-1998) compiled by Hoving (a), and observations documented by MDIFW staff (not including lynx telemetry observations) between 1999-2010 (b) that identified 5 northern biophysical regions (inset) best represents both past (a) and current (b) lynx primary range in Maine.................................................................................................. 12 Figure 1.4. Movements of radiocollared lynx from the Maine study area. The longest straight-line movement was 249 miles (400 km) (MDIFW unpublished data).............................................................................................................................. 22 Figure 2.1. Facsimile of a Maine bounty form to receive payment for the harvest of a wildcat. A claimant was required to complete a bounty certificate. However, the number of lynx bountied between 1832 and 1967 can not be determined from other wildcats. ............................................................................................................... 28 Figure 2.2. Lynx distribution
Recommended publications
  • MINNESOTA MUSTELIDS Young
    By Blane Klemek MINNESOTA MUSTELIDS Young Naturalists the Slinky,Stinky Weasel family ave you ever heard anyone call somebody a weasel? If you have, then you might think Hthat being called a weasel is bad. But weasels are good hunters, and they are cunning, curious, strong, and fierce. Weasels and their relatives are mammals. They belong to the order Carnivora (meat eaters) and the family Mustelidae, also known as the weasel family or mustelids. Mustela means weasel in Latin. With 65 species, mustelids are the largest family of carnivores in the world. Eight mustelid species currently make their homes in Minnesota: short-tailed weasel, long-tailed weasel, least weasel, mink, American marten, OTTERS BY DANIEL J. COX fisher, river otter, and American badger. Minnesota Conservation Volunteer May–June 2003 n e MARY CLAY, DEMBINSKY t PHOTO ASSOCIATES r mammals a WEASELS flexible m Here are two TOM AND PAT LEESON specialized mustelid feet. b One is for climb- ou can recognize a ing and the other for hort-tailed weasels (Mustela erminea), long- The long-tailed weasel d most mustelids g digging. Can you tell tailed weasels (M. frenata), and least weasels eats the most varied e food of all weasels. It by their tubelike r which is which? (M. nivalis) live throughout Minnesota. In also lives in the widest Ybodies and their short Stheir northern range, including Minnesota, weasels variety of habitats and legs. Some, such as badgers, hunting. Otters and minks turn white in winter. In autumn, white hairs begin climates across North are heavy and chunky. Some, are excellent swimmers that hunt to replace their brown summer coat.
    [Show full text]
  • Food Habits of Black Bears in Suburban Versus Rural Alabama
    Food Habits of Black Bears in Suburban versus Rural Alabama Laura Garland, Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL 36849 Connor Ellis, 18832 #1 Gulf Boulevard Indian Shores, FL 33785 Todd Steury, Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL 36849 Abstract: Little is known about the food habits of black bears (Ursus americanus) in Alabama. A major concern is the amount of human influence in the diet of these bears as human and bear populations continue to expand in a finite landscape and bear-human interactions are increasing. To better understand dietary habits of bears, 135 scats were collected during late August to late November 2011–2014. Food items were classified into the cat- egories of fruit, nuts/seeds, insects, anthropogenic, animal hairs, fawn bones, and other. Plant items were classified down to the lowest possible taxon via visual and DNA analysis as this category composed the majority of scat volumes. Frequency of occurrence was calculated for each food item. The most commonly occurring foods included: Nyssa spp. (black gum, 25.2%), Poaceae family (grass, 24.5%), Quercus spp. (acorn, 22.4%), and Vitis spp. (muscadine grape, 8.4%). Despite the proximity of these bear populations to suburban locations, during our sampling period we found that their diet primarily comprised vegetation, not anthropogenic food; while 100% of scat samples contained vegetation, only 19.6% of scat samples contained corn and no other anthropogenic food sources were detected. Based on a Fisher’s exact test, dietary composition did not differ between bears living in subur- ban areas compared to bears occupying more rural areas (P = 0.3891).
    [Show full text]
  • Species Assessment for the Humboldt Marten (Martes Americana Humboldtensis)
    Arcata Fish and Wildlife Office Species Assessment for the Humboldt Marten (Martes americana humboldtensis) R. Hamlin, L. Roberts, G. Schmidt, K. Brubaker and R. Bosch Photo credit: Six Rivers National Forest Endangered Species Program U.S. Fish and Wildlife Service Arcata Fish and Wildlife Office 1655 Heindon Road Arcata, California 95521 (707) 822-7201 www.fws.gov/arcata September 2010 i The suggested citation for this report is: Hamlin, R., L. Roberts, G. Schmidt, K. Brubaker and R. Bosch 2010. Species assessment for the Humboldt marten (Martes americana humboldtensis). U.S. Fish and Wildlife Service, Arcata Fish and Wildlife Office, Arcata, California. 34 + iv pp. ii Table of Contents INTRODUCTION ................................................................................................................ 1 BIOLOGICAL INFORMATION .......................................................................................... 1 Species Description ................................................................................................... 1 Taxonomy.................................................................................................................. 1 Life History ............................................................................................................... 4 Reproduction .................................................................................................. 5 Diet ................................................................................................................ 5 Home Range
    [Show full text]
  • American Marten (Martes Americana) Species Assessment Prepared For
    American Marten (Martes Americana) Species Assessment Prepared for the Grand Mesa, Uncompahgre, and Gunnison National Forest September 2005 Prepared by Matt Vasquez1 with contributions by Leslie Spicer1, 2005 1 Biological Science Technician (Wildlife), Gunnison Ranger District Reviewed and Edited by Clay Speas, Forest Fisheries Biologist and Tom Holland, Forest Wildlife Biologist Cover photos taken by remote cameras at track plate and bait stations on the Gunnison Ranger District, Grand Mesa, Uncompahgre, and Gunnison National Forest. Last Revised: September 28, 2005 Page 1 of 23 Grand Mesa, Uncompahgre, and Gunnison National Forest American Marten (Martes Americana) Species Assessment TABLE OF CONTENTS INTRODUCTION........................................................................................................................................ 5 SUMMARY OF KEY FINDINGS .............................................................................................................. 5 HABITAT CRITERIA USED IN FOREST-WIDE HABITAT EVALUATION ................................... 6 2001 MIS Habitat Criteria...................................................................................................................... 6 Rationale ............................................................................................................................................... 6 2005 MIS Habitat Criteria...................................................................................................................... 6 Rationale ............................................................................................................................................
    [Show full text]
  • The Cost of Migratory Prey: Seasonal Changes in Semi-Domestic Reindeer Distribution Influences Breeding Success of Eurasian Lynx in Northern Norway
    The cost of migratory prey: seasonal changes in semi-domestic reindeer distribution influences breeding success of Eurasian lynx in northern Norway Zea Walton1, Jenny Mattisson2, John D. C. Linnell2, Audun Stien3 and John Odden2 1Dept of Forestry and Wilderness Management, Hedmark College, Koppang, Norway 2Norwegian Inst. for Nature Research (NINA), NO-7484 Trondheim, Norway 3Norwegian Inst. for Nature Research (NINA), Fram Centre, Tromsø, Norway Corresponding author: Zea Walton, Dept of Forestry and Wilderness Management, Hedmark College, Koppang, Norway. E-mail: [email protected] Decision date: 31-Aug-2016 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1111/oik.03374]. ‘This article is protected by copyright. All rights reserved.’ Accepted Article Accepted (Abstract) Migratory prey is a widespread phenomenon that has implications for predator–prey interactions. By creating large temporal variation in resource availability between seasons it becomes challenging for carnivores to secure a regular year-round supply of food. Some predators may respond by following their migratory prey, however, most predators are sedentary and experience strong seasonal variation in resource availability. Increased predation on alternative prey may dampen such seasonal resource fluctuations, but reduced reproduction rates in predators is a predicted consequence of migratory primary prey behavior that has received little empirical attention. We used data from 23 GPS collared Eurasian lynx Lynx lynx monitored during 2007–2013 in northern Norway, to examine how spatio-temporal variation in the migratory behavior of semi-domestic reindeer Rangifer tarandus influences lynx spatial organization and reproductive success using estimates of seasonal home range overlap and breeding success.
    [Show full text]
  • FISHER Pekania Pennanti
    WILDLIFE IN CONNECTICUT WILDLIFE FACT SHEET FISHER Pekania pennanti Background J. FUSCO © PAUL In the nineteenth century, fishers became scarce due to forest logging, clearing for agriculture, and overexploitation. By the 1900s, fishers were considered extirpated from the state. Reforestation and changes in land-use practices have restored the suitability of the fisher’s habitat in part of its historic range, allowing a population to recolonize the northeastern section of the state. Fishers did not recolonize suitable habitat in northwestern Connecticut, since the region was isolated from a source population. Fishers were rare in western Massachusetts, and the developed and agricultural habitats of the Connecticut River Valley were a barrier to westward expansion by fishers in northeastern Connecticut. A project to reintroduce this native mammal into northwestern Connecticut was initiated by the Wildlife Division in 1988. Funds from reimbursement of trapping wild turkeys in Connecticut for release in Maine were used to purchase fishers caught by cooperating trappers in New Hampshire and Vermont. In what is termed a "soft release," fishers were penned and fed at the release site for a couple of weeks prior to being released. Through radio and snow tracking, biologists later found that the fishers that were released in northwestern Connecticut had high survival rates and successfully reproduced. As a result of this project, a viable, self-sustaining population of this native mammal is now established in western Connecticut. Fishers found throughout eastern Connecticut are a result of natural range expansion. In 2005, Connecticut instituted its first modern day regulated trapping season for fishers. Most northern states have regulated fisher trapping seasons.
    [Show full text]
  • Wildlife Research Reports
    MAMMALS - JULY 2005 WILDLIFE RESEARCH REPORTS JULY 2004 – JUNE 2005 MAMMALS PROGRAM COLORADO DIVISION OF WILDLIFE Research Center, 317 W. Prospect, Fort Collins, CO 80526 The Wildlife Reports contained herein represent preliminary analyses and are subject to change. For this reason, information MAY NOT BE PUBLISHED OR QUOTED without permission of the Author. STATE OF COLORADO Bill Owens, Governor DEPARTMENT OF NATURAL RESOURCES Russell George, Executive Director WILDLIFE COMMISSION Jeffrey Crawford, Chair …………………………………………………………………….…..… Denver Tom Burke, Vice Chair ………………………………….…………...………….…........…Grand Junction Ken Torres, Secretary ……………………………………...…………….……………..……….... Weston Robert Bray………………………………………………….......................................................…Redvale Rick Enstrom………………………………………………………………….………….……...Lakewood Philip James …………………………………………………………………..….………….…Fort Collins Claire M. O’Neal………………………………………………..…………….………..…………..Holyoke Richard Ray ………………………………………………………………………………...Pagosa Springs Robert T. Shoemaker…………………………………………………………….………..…….Canon City Don Ament, Dept. of Ag, Ex-officio…………………………………………………….…….....Lakewood Russell George, Executive Director, Ex-officio……………………………………………..………Denver DIRECTOR’S STAFF Bruce McCloskey, Director Mark Konishi, Deputy Director-Education and Public Affairs Steve Cassin, Chief Financial Officer Jeff Ver Steeg, Assistant Director-Wildlife Programs John Bredehoft, Assistant Director-Field Operations Marilyn Salazar, Assistant Director-Support Services MAMMALS RESEARCH STAFF David Freddy,
    [Show full text]
  • Lynx, Felis Lynx, Predation on Red Foxes, Vulpes Vulpes, Caribou
    Lynx, Fe/is lynx, predation on Red Foxes, Vulpes vulpes, Caribou, Rangifer tarandus, and Dall Sheep, Ovis dalli, in Alaska ROBERT 0. STEPHENSON, 1 DANIEL V. GRANGAARD,2 and JOHN BURCH3 1Alaska Department of Fish and Game, 1300 College Road, Fairbanks, Alaska, 99701 2Alaska Department of Fish and Game, P.O. Box 305, Tok, Alaska 99780 JNational Park Service, P.O. Box 9, Denali National Park, Alaska 99755 Stephenson, Robert 0., Daniel Y. Grangaard, and John Burch. 1991. Lynx, Fe/is lynx, predation on Red Foxes, Vulpes vulpes, Caribou, Rangifer tarandus, and Dall Sheep, Ovis dalli, in Alaska. Canadian Field-Naturalist 105(2): 255- 262. Observations of Canada Lynx (Fe/is lynx) predation on Red Foxes ( Vulpes vulpes) and medium-sized ungulates during winter are reviewed. Characteristics of I 3 successful attacks on Red Foxes and 16 cases of predation on Caribou (Rangifer tarandus) and Dall Sheep (Ovis dalli) suggest that Lynx are capable of killing even adults of these species, with foxes being killed most easily. The occurrence of Lynx predation on these relatively large prey appears to be greatest when Snowshoe Hares (Lepus americanus) are scarce. Key Words: Canada Lynx, Fe/is lynx, Red Fox, Vulpes vulpes, Caribou, Rangifer tarandus, Dall Sheep, Ovis dalli, predation, Alaska. Although the European Lynx (Felis lynx lynx) quently reach 25° C in summer and -10 to -40° C in regularly kills large prey (Haglund 1966; Pullianen winter. Snow depths are generally below 80 cm, 1981), the Canada Lynx (Felis lynx canadensis) and snow usually remains loosely packed except at relies largely on small game, primarily Snowshoe high elevations.
    [Show full text]
  • Intermediate Gastropod Hosts of Major Feline Cardiopulmonary Nematodes in an Area of Wildcat and Domestic Cat Sympatry in Greece
    Dimzas et al. Parasites Vectors (2020) 13:345 https://doi.org/10.1186/s13071-020-04213-z Parasites & Vectors RESEARCH Open Access Intermediate gastropod hosts of major feline cardiopulmonary nematodes in an area of wildcat and domestic cat sympatry in Greece Dimitris Dimzas1, Simone Morelli2, Donato Traversa2, Angela Di Cesare2, Yoo Ree Van Bourgonie3, Karin Breugelmans3, Thierry Backeljau3,4, Antonio Frangipane di Regalbono5 and Anastasia Diakou1* Abstract Background: The metastrongyloid nematodes Aelurostrongylus abstrusus, Troglostrongylus brevior and Angiostrongy- lus chabaudi are cardiopulmonary parasites afecting domestic cats (Felis catus) and wildcats (Felis silvestris). Although knowledge on these nematodes has been improved in the past years, gaps in our knowledge of their distribution and role of gastropods as intermediate hosts in Europe still exist. This study reports on the presence of these nematodes and their intermediate hosts in an area in Greece where domestic cats and wildcats occur in sympatry. Methods: Terrestrial gastropods were collected in the feld and identifed morphologically and by mitochondrial DNA-sequence analysis. Metastrongyloid larvae were detected by artifcial digestion, morphologically identifed to the species and stage level and their identity was molecularly confrmed. Results: Aelurostrongylus abstrusus was found in the snails Massylaea vermiculata and Helix lucorum, T. brevior in the slug Tandonia sp., and A. chabaudi in the slug Limax sp. and the snails H. lucorum and M. vermiculata. Conclusions: To the best of our knowledge this study provides the frst reports of (i) terrestrial gastropods being naturally infected with A. chabaudi, (ii) T. brevior naturally infecting terrestrial gastropods in Europe, and (iii) A. abstrusus naturally infecting terrestrial gastropods in Greece.
    [Show full text]
  • PICA Project Report (Action A2.2 & 2.3)
    PICA Project Report (Action A2.2 & 2.3) Investigation of Pallas’s cat activity patterns and temporal interactions with sympatric species Authors: Katarzyna Ruta, Gustaf Samelius, David Barclay, Emma Nygren PICA - “Conservation of the Pallas’s cat through capacity building, research, and global planning” 1. Introduction: 1.1 Activity patterns of wild felids: Activity patterns form a part of species’ adaptation to their environment (Beltran & Delibes, 1994) and are therefore a fundamental aspect of animal behaviour (Nielsen, 1983; Weller & Bennett, 2001). Felids are generally considered to be crepuscular and nocturnal in their activity (Kitchener, 1991), although they are well adapted to function in a wide range of light conditions (Sunquist & Sunquist, 2002). Numerous abiotic pressures and biotic interactions are known to shape the temporal behaviour of (cat-like) carnivores (Marinho et al., 2018), including changes in temperature (Beltran & Delibes, 1994; Podolski et al., 2013), light (Huck et al., 2017; Heurich et al., 2014) and season (Podolski et al., 2013; Manfredi et al., 2011), sex and reproductive status of the animal (Kolbe & Squires, 2007; Schmidt, 1999; Schmidt et al., 2009), predation risk (Caro, 2005; Farías et al., 2012) and human disturbance (Wolf & Ale, 2009; Ale & Brown, 2009). Owing to the dietary constraints of carnivores whose preys have their own well-defined circadian rhythms (Halle, 2000; Zielinski, 2000), the availability and vulnerability of prey is, however, considered as one of the main influences on predator temporal activity (Zielinski, 1988; Lodé, 1995). According to Optimal Foraging Theory, predators are expected to synchronize their daily activity with the activity of their most profitable prey, increasing the probability of encounters while reducing energy expenditure (MacArthur & Pianka, 1966; Monterroso et al., 2013; Emmons, 1987).
    [Show full text]
  • Canada Lynx Lynx Canadensis Fact Sheet Natural Resources April 2011 Conservation Service
    Canada Lynx Lynx canadensis Fact Sheet Natural Resources April 2011 Conservation Service and seral lodgepole pine, is the primary vegetation type occupied. Cedar-hemlock forests may also be important. Mature forests with downed logs and windfalls provide cover for denning, escape, and protection from severe weather. Landscapes with a variety of forest age classes and cover types support large numbers of snowshoe hares for lynx foraging. Recent burns and cutting units may provide herbaceous summer foods for snowshoe hares and older, regenerating burns and cutting units provide Official Status: Threatened. woody browse for winter snowshoe hare Threatened species are species that are likely to populations. Cold, dry snow conditions give lynx a become endangered within the foreseeable future competitive advantage with their long legs and large throughout all or a significant portion of their range. feet, which act as snowshoes. Listed Federal Register Volume 63, No. 58, March 24, 2000. Historical Status The Canada lynx once occupied 16 of the contiguous United States (Maine, New Hampshire, Vermont, New York, Massachusetts, Pennsylvania, Michigan, Wisconsin, Minnesota, Washington, Oregon, Idaho, Montana, Wyoming, Utah, and Colorado) as well as present day range in mountainous and boreal forest habitats throughout Canada and Alaska. Present Status Small populations of lynx remain in only three of the 16 contiguous states originally inhabited: Montana, Life History Washington, and Maine. If lynx still exist in any of Mating occurs through March and April; kittens are the other lower 48 states, they are very rare. born during May and June after a 62-day gestation Habitat period. Litter size averages 2 (1-4).
    [Show full text]
  • CANAAN VALLEY NATIONAL WILDLIFE REFUGE April 2007
    AMENDED ENVIRONMENTAL ASSESSMENT HUNT PROGRAM PROPOSAL CANAAN VALLEY NATIONAL WILDLIFE REFUGE April 2007 U.S. Department of the Interior Fish and Wildlife Service Canaan Valley National Wildlife Refuge Tucker County, West Virginia ENVIRONMENTAL ASSESSMENT/HUNTING CANAAN VALLEY NWR TABLE OF CONTENTS LIST OF FIGURES/TABLES ....................................................................................................... vi LIST OF ACRONYMS ................................................................................................................ vii I. Introduction..........................................................................................................................1 II. Purpose and Need for the Proposed Action .........................................................................5 A. Proposed Action.......................................................................................................5 B. Purpose.....................................................................................................................5 C. Need for the Proposed Action..................................................................................6 III. Proposed Action and Its Alternatives ..................................................................................6 A. Summary of the Alternatives ...................................................................................7 B. Alternatives Dismissed from Consideration............................................................7 C. Description of Alternatives......................................................................................7
    [Show full text]