Technical Options for the Mitigation of Direct Methane and Nitrous Oxide Emissions from Livestock: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Technical Options for the Mitigation of Direct Methane and Nitrous Oxide Emissions from Livestock: a Review Animal (2013), 7:s2, pp 220–234 & Food and Agriculture Organization of the United Nations 2013 animal doi:10.1017/S1751731113000876 Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review - P. J. Gerber1 , A. N. Hristov2, B. Henderson1, H. Makkar1,J.Oh2, C. Lee2, R. Meinen2, F. Montes3,T.Ott2, J. Firkins4, A. Rotz5, C. Dell5, A. T. Adesogan6,W.Z.Yang7, J. M. Tricarico8, E. Kebreab9, G. Waghorn10, J. Dijkstra11 and S. Oosting11 1Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, Vialle delle terme di Caracalla, 00153 Rome, Italy; 2Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA; 3Plant Science Department, The Pennsylvania State University, University Park, PA 16802, USA; 4Department of Animal Sciences, The Ohio State University, Columbus OH 43210, USA; 5Department of Animal Sciences, USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802, USA; 6University of Florida, Gainesville, FL 32608, USA; 7Agriculture and Agri-Food Canada, Lethbridge AB, Canada T1J 4B1; 8Innovation Center for U.S. Dairy, Rosemont, IL 60018, USA; 9Department of Animal Sciences, University of California, Davis, CA 95616, USA; 10DairyNZ, Hamilton 3240, New Zealand; 11Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands (Received 28 February 2013; Accepted 15 April 2013) Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed. These include measures to reduce CH4 emissions from enteric fermentation by ruminants, the largest single emission source from the global livestock sector, and for reducing CH4 and N2O emissions from manure. A unique feature of this review is the high level of attention given to interactions between mitigation options and productivity. Among the feed supplement options for lowering enteric emissions, dietary lipids, nitrates and ionophores are identified as the most effective. Forage quality, feed processing and precision feeding have the best prospects among the various available feed and feed management measures. With regard to manure, dietary measures that reduce the amount of N excreted (e.g. better matching of dietary protein to animal needs), shift N excretion from urine to faeces (e.g. tannin inclusion at low levels) and reduce the amount of fermentable organic matter excreted are recommended. Among the many ‘end-of-pipe’ measures available for manure management, approaches that capture and/or process CH4 emissions during storage (e.g. anaerobic digestion, biofiltration, composting), as well as subsurface injection of manure, are among the most encouraging options flagged in this section of the review. The importance of a multiple gas perspective is critical when assessing mitigation potentials, because most of the options reviewed show strong interactions among sources of greenhouse gas (GHG) emissions. The paper reviews current knowledge on potential pollution swapping, whereby the reduction of one GHG or emission source leads to unintended increases in another. Keywords: greenhouse gases, climate change, animal production, animal feeding, manure management Implications Introduction The paper reports on technical options for the mitigation of In view of livestock’s sizeable contribution to global warming, livestock sector’s contribution to climate change. On the this review assesses the veracity, efficacy and feasibility of basis of a comprehensive review of in vivo studies, it pro- the many mitigation options that have been put forward by vides the researcher and the livestock sector stakeholder practitioners and researchers over the past few decades. This with concise information on exiting mitigation practices, review spans the breadth of the literature on mitigation, their effectiveness and interactions. Uncertainties and areas drawing primarily on a recent comprehensive review of miti- for further research are also highlighted. It is hoped that the gation measures for livestock by Hristov et al. (2013), which paper will contribute to the identification of lower green- incorporates information from over 900 references. This review house gas -emission pathways for livestock production. also benefitted from an expert consultation, which assembled leading global scientists to peer-review and improve the - E-mail: [email protected] review by Hristov et al. (2013). Much of the discussion on 220 Mitigation of GHG emissions from livestock interactions between mitigation practices and greenhouse The emission intensity (Ei) of a commodity, measured as gases (GHGs) in this paper is derived from the workshop. the quantity of GHG emissions generated per unit of output, Livestock production plays a crucial role in food security, is a useful metric for several reasons. It allows for mean- rural livelihoods and development at large (Herrero et al., ingful comparison of emissions especially within, but also 2013). It also accounts for a substantial share of global between, commodities. It is also very closely linked to the anthropogenic GHG. If all emissions along the livestock productivity of the system, measured in terms of output per supply chain are considered, this contribution amounts to animal, or on a whole herd basis. Moreover, as productivity 7.1 Gt CO2-eq, for the 2005 reference period (FAO, 2013a improvements can increase profits at the same time as and 2013b). When considering only the direct CH4 and N2O lowering Ei, they may also present opportunities to profitably emissions from enteric fermentation and manure (including invest in mitigation. The Ei metric can also accommodate its application), livestock are estimated to contribute 5.4 Gt emission reductions (or emissions stabilization) alongside CO2-eq to global emissions (FAO, 2013a and 2013b). expanding output, which is important, given that livestock Large differences in emission intensities and/or quantities commodity production is projected to grow at a steady pace are observed between species, regions and production sys- until at least the middle of this century. Mitigation measures tems. When considering total supply chain emissions, cattle that improve productivity also have the best prospects for (beef and dairy) production generates 4.6 Gt, the largest minimizing the trade-offs between mitigation, food security share of global livestock emissions by some margin. This figure and producer welfare. At the same time, profitable pro- drops to a still significant 3.3 Gt when only the direct CH4 and ductivity improvements will, in many cases, encourage the N2O emissions from enteric fermentation and manure are sector to expand; therefore, from a policy perspective they considered (FAO, 2013b). This massive contribution stems from are necessary options, which can only be sufficient for cattle’s dominant global share of live animal biomass and, like mitigation if coupled with policies to restrict the sector’s all ruminant animals, from their fermentative digestive system. total quantity of emissions. Other livestock species have much lower and similar levels This review focuses on mitigation options for direct emis- of emissions, even when considering the full lifecycle of sions: enteric CH4 mitigation practices for ruminant animals emissions: pigs (0.7 Gt CO2-eq), poultry (0.7 Gt CO2-eq), (only in vivo studies were considered in the original review by buffalo (0.6 Gt CO2-eq) and small ruminants (0.5 Gt CO2-eq) Hristov et al., 2013) and manure mitigation practices for both (FAO, 2013a and 2013b). ruminant and monogastric species. Mitigation options that Of the 3.3 Gt of direct cattle GHG emissions, CH4 from reduce Ei only by increasing herd productivity (e.g. animal enteric fermentation is the largest source, accounting for a husbandry, genetics and health management) while keeping 71% share. Manure N2O, particularly from deposition on herd GHG output constant (or increasing it proportionally pasture, accounts for the next largest share (25%), whereas less than productivity) are not included in this review, despite the remaining 4% is from manure CH4 (FAO, 2013b). their great relevance among low-intensity ruminant systems Direct emissions typically account for 15% and 35% in (Gerber et al., 2011; FAO, 2013a and 2013b). poultry and pig production, respectively. Emissions related to In the following section, mitigation options for reducing manure storage and processing are important for pig supply enteric CH4 production are reviewed. These options fall into chains with 27% of emissions (FAO, 2013a). two broad categories of feed supplements and feeds/feeding In addition to direct emissions, livestock supply chains management. Following this, mitigation options for manure release GHG through animal feed production and post-harvest management are reviewed. These include dietary manage- activities. Feed production is the main source of indirect emis- ment options, but the focus is mainly on a range of ‘end-of- sions and is particularly important for the monogastric sector. pipe’ options for the storage, handling and application phases Emissions (primarily N2O) from feed production are almost of manure management. equal in size to direct emissions. They represent 36% of cattle After this, the role of interactions between mitigation
Recommended publications
  • Thymol Decreases Apoptosis and Carotid Inflammation Induced by Hypercholesterolemia Through a Discount in Oxidative Stress
    http://www.cjmb.org Open Access Original Article Crescent Journal of Medical and Biological Sciences Vol. 4, No. 4, October 2017, 186–193 eISSN 2148-9696 Thymol decreases apoptosis and carotid inflammation induced by hypercholesterolemia through a discount in oxidative stress Roshanak Bayatmakoo1, Nadereh Rashtchizadeh2*, Parichehreh Yaghmaei1, Mehdi Farhoudi3, Pouran Karimi3 Abstract Objective: Atherosclerosis sclerosis is a chronic inflammatory disease that can lead to cardiovascular and cerebrovascular disorders that are generally along with hypercholesterolemia and oxidative stress. Various surveys have shown that thymol is a polyphenolic compound with anti-inflammatory and antioxidant properties. This study aimed to investigate the anti- inflammatory and antiapoptotic effects of thymol on carotid tissue of hypercholesterolemic rats. Materials and Methods: Forty male Wistar rats were randomly divided into 4 groups with 10 members each (n = 10): a control group with a normal diet (ND), a group with a high-cholesterol (2%) diet (HD), a group with a high-cholesterol diet combined with thymol (24 mg/kg HD + T), and a group with a thymol diet (T). After preparing serum from peripheral blood of rats, lipid measurements were obtained, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), by using a colorimetric method; the levels of oxidized LDL (OxLDL) were obtained through enzyme-linked immunosorbent assay (ELISA). The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant enzymes, as well as the concentrations of malondialdehyde (MDA) and serum total antioxidant capacity (TAC), were determined with the use of colorimetric methods. The protein expressions of Bcl2 and cleaved caspase 3 and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in rat carotid tissue were determined by an immunoblotting method.
    [Show full text]
  • Estrogen Pharmacology. I. the Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man
    Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man Mark N. Mueller, Attallah Kappas J Clin Invest. 1964;43(10):1905-1914. https://doi.org/10.1172/JCI105064. Research Article Find the latest version: https://jci.me/105064/pdf Journal of Clinical Investigation Vol. 43, No. 10, 1964 Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) inMan* MARK N. MUELLER t AND ATTALLAH KAPPAS + WITH THE TECHNICAL ASSISTANCE OF EVELYN DAMGAARD (From the Department of Medicine and the Argonne Cancer Research Hospital,§ the University of Chicago, Chicago, Ill.) This report 1 describes the influence of natural biological action of natural estrogens in man, fur- estrogens on liver function, with special reference ther substantiate the role of the liver as a site of to sulfobromophthalein (BSP) excretion, in man. action of these hormones (5), and probably ac- Pharmacological amounts of the hormone estradiol count, in part, for the impairment of BSP dis- consistently induced alterations in BSP disposal posal that characterizes pregnancy (6) and the that were shown, through the techniques of neonatal period (7-10). Wheeler and associates (2, 3), to result from profound depression of the hepatic secretory Methods dye. Chro- transport maximum (Tm) for the Steroid solutions were prepared by dissolving crystal- matographic analysis of plasma BSP components line estradiol and estriol in a solvent vehicle containing revealed increased amounts of BSP conjugates 10% N,NDMA (N,N-dimethylacetamide) 3 in propylene during estrogen as compared with control pe- glycol. Estradiol was soluble in a concentration of 100 riods, implying a hormonal effect on cellular proc- mg per ml; estriol, in a concentration of 20 mg per ml.
    [Show full text]
  • Thymol, Menthol and Camphor from Indian Sources
    THYMOL, MENTHOL AND CAMPHOR IN INDIA : CHOPRA & MUKHERJEE 361 ' sweetmeats, in pan supari' (betel leaf) mix- Articles tures, etc. The ajowan plant has, therefore, Original been grown to a greater or lesser extent all /over India. It is particularly abundant in Bengal, Central India (Indore) and Hyderabad THYMOL, MENTHOL AND CAMPHOrf (Deccan). 7,000 to 8,000 acres of land FROM INDIAN SOURCES Nearly are under cultivation each year in the Nizam's By R. N. CHOPRA, m.a., m.d. (Cantab.) Dominions alone and similar large areas are LIEUTENANT-COLONEL, I.M.S. also stated to be under cultivation in the and the United Provinces. i and Punjab Large quantities also find their way into India through B. m.b. MUKHERJEE, (Cal.) the inland routes from Afghanistan, Baluchistan Indigenous Drugs Enquiry, I. R. F. A., Series No. 35 and Persia. It can in fact be grown in any of the Indian Peninsula and the (From the Department of Pharmacology, School of part country Tropical Medicine, Calcutta) has possibilities of being a rich source of raw material for the of Indeed Thymol, menthol and camphor are well production thymol. this source has been the known in the materia medica of western already exploited by manufacturers as will be seen from the medicine as well as in that of the foreign indigenous of seeds from India between medicine in India. Thymol has been considered quantities exported 1911 and 1918 :? important on account of its powerful antiseptic, Value of germicidal and anthelmintic properties. One T otal the quantity seed of its chief uses in recent years has been in the in cwts.
    [Show full text]
  • Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus Neoformans
    molecules Article Investigation of Antifungal Mechanisms of Thymol in the Human Fungal Pathogen, Cryptococcus neoformans Kwang-Woo Jung 1,*, Moon-Soo Chung 1, Hyoung-Woo Bai 1,2 , Byung-Yeoup Chung 1 and Sungbeom Lee 1,2,* 1 Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; [email protected] (M.-S.C.); [email protected] (H.-W.B.); [email protected] (B.-Y.C.) 2 Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Yuseong-gu, Korea * Correspondence: [email protected] (K.-W.J.); [email protected] (S.L.) Abstract: Due to lifespan extension and changes in global climate, the increase in mycoses caused by primary and opportunistic fungal pathogens is now a global concern. Despite increasing attention, limited options are available for the treatment of systematic and invasive mycoses, owing to the evo- lutionary similarity between humans and fungi. Although plants produce a diversity of chemicals to protect themselves from pathogens, the molecular targets and modes of action of these plant-derived chemicals have not been well characterized. Using a reverse genetics approach, the present study re- vealed that thymol, a monoterpene alcohol from Thymus vulgaris L., (Lamiaceae), exhibits antifungal Cryptococcus neoformans activity against by regulating multiple signaling pathways including cal- cineurin, unfolded protein response, and HOG (high-osmolarity glycerol) MAPK (mitogen-activated protein kinase) pathways. Thymol treatment reduced the intracellular concentration of Ca2+ by Citation: Jung, K.-W.; Chung, M.-S.; Bai, H.-W.; Chung, B.-Y.; Lee, S.
    [Show full text]
  • Commonwealth of Virginia Medicaid and FAMIS
    Commonwealth of Virginia Medicaid Program Medicaid and FAMIS Preferred Drug List 2021 Effective: September 7, 2021 This is a list of preferred drugs for Medicaid and FAMIS members under Virginia Premier in collaboration with Kaiser Permanente. Through this rela tionship, membe rs receive quality health care services at Kaiser Permanente medica l centers. This list is approved by the Kaiser Permanente Mid-Atlantic States Pharmacy and Therapeutics Committee. The preferred drug list has closed classes for which only the drugs listed within the classes are covered. Generally, we will only approve a request for a non-preferred drug if your prescribing doctor considers the drug to be medically necessary. If a non-preferred drug is not medically necessary, but you want the non-preferred drug, you will be responsible for paying the full cost of the drug . The preferred drug list is only for outpatient and self-administered drugs. It is not for those used in hospitals (inpatient settings), doctor’s offices, or infusion centers. The preferred drug list does not provide detailed information on your Medicaid coverage. For additiona l information regarding your pharmacy benefits, please call Member Services at 855-249-5025 from 7:30 a.m. to 5:30 p.m., Monday through Friday. Generic, brand name, and non-preferred medications We have brand and generic drugs on the preferred drug list. A generic drug is approved by the Food and Drug Administration (FDA) because it has the same active ingredient as the brand-name drug. In most cases, your doctor will prescribe a generic drug if one is available.
    [Show full text]
  • Antimicrobial Potency of Single and Combined Mupirocin and Monoterpenes, Thymol, Menthol and 1,8-Cineole Against Staphylococcus Aureus Planktonic and Biofilm Growth
    The Journal of Antibiotics (2016) 69, 689–696 & 2016 Japan Antibiotics Research Association All rights reserved 0021-8820/16 www.nature.com/ja ORIGINAL ARTICLE Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1,8-cineole against Staphylococcus aureus planktonic and biofilm growth Domagoj Kifer, Vedran Mužinić and Maja Šegvić Klarić Staphylococcus aureus is one of the most commonly isolated microbes in chronic rhinosinusitis (CRS) that can be complicated due to the formation of a staphylococcal biofilm. In this study, we investigated antimicrobial efficacy of single mupirocin and three types of monoterpenes (thymol, menthol and 1,8-cineole) as well as mupirocin–monoterpene combinations against S. aureus ATCC 29213 and 5 methicilin-resistant S. aureus strains (MRSA) grown in planktonic and biofilm form. MIC against planktonic bacteria as well as minimum biofilm-eliminating concentrations (MBECs) and minimum biofilm inhibitory concentrations (MBICs) were determined by TTC and MTT reduction assay, respectively. The MICs of mupirocin (0.125–0.156 μgml− 1) were three orders of magnitude lower than the MICs of monoterpenes, which were as follows: thymol (0.250–0.375 mg ml − 1) 4 menthol (1 mg ml − 1) 4 1,8-cineole (4–8mgml− 1). Mupirocin-monoterpene combinations showed indifferent effect as compared with MICs of single substances. Mupirocin (0.016–2mgml− 1) failed to destroy the biofilm. The MBECs of thymol and menthol were two- to sixfold higher than their MICs, while 1,8-cineole exerted a weak antibiofilm effect with MBECs 16- to 64-fold higher than MICs. Mixture of mupirocin and 1,8 cineole exerted a potentiated biofilm-eliminating effect, mupirocin–menthol showed antagonism, while effect of thymol–mupirocin mixture was inconclusive.
    [Show full text]
  • Thymol Nanoemulsion Promoted Broiler Chicken's Growth
    www.nature.com/scientificreports OPEN Thymol nanoemulsion promoted broiler chicken’s growth, gastrointestinal barrier and bacterial community and conferred protection against Salmonella Typhimurium Doaa Ibrahim1*, Ahmed Abdelfattah‑Hassan2,3, M. Badawi1, Tamer Ahmed Ismail4, Mahmoud M. Bendary5, Adel M. Abdelaziz6, Rasha A. Mosbah7, Dalia Ibrahim Mohamed8, Ahmed H. Arisha9,10 & Marwa I. Abd El‑Hamid11* The present study involved in vivo evaluation of the growth promoting efects of thymol and thymol nanoemulsion and their protection against Salmonella Typhimurium infection in broilers. One‑day old 2400 chicks were randomly divided into eight groups; negative and positive control groups fed basal diet without additives and thymol and thymol nanoemulsion groups (0.25, 0.5 and 1% each). At d 23, all chicks except negative control were challenged with S. Typhimurium. Over the total growing period, birds fed 1% thymol nanoemulsion showed better growth performance even after S. Typhimurium challenge, which came parallel with upregulation of digestive enzyme genes (AMY2A, PNLIP and CCK). Additionally, higher levels of thymol nanoemulsion upregulated the expression of MUC‑2, FABP2, IL-10, IgA and tight junction proteins genes and downregulated IL-2 and IL-6 genes expression. Moreover, 1% thymol nanoemulsion, and to lesser extent 0.5% thymol nanoemulsion and 1% thymol, corrected the histological alterations of cecum and liver postinfection. Finally, supplementation of 1% thymol, 0.5 and 1% thymol nanoemulsion led to increased Lactobacilli counts and decreased S. Typhimurium populations and downregulated invA gene expression postinfection. This frst report of supplying thymol nanoemulsion in broiler diets proved that 1% nano‑thymol is a potential growth promoting and antibacterial agent.
    [Show full text]
  • Thymol, Menthol and Eucalyptol As Agents for Microbiological Control in the Oral Cavity: a Scoping Review
    Rev. Colomb. Cienc. Quím. Farm., Vol. 49(1), 44-69, 2020 www.farmacia.unal.edu.co Review article / http://dx.doi.org/10.15446/rcciquifa.v49n1.87006 Thymol, menthol and eucalyptol as agents for microbiological control in the oral cavity: A scoping review María Cecilia Martínez-Pabón1, Mailen Ortega-Cuadros2* School of Dentistry, Universidad de Antioquia, Medellín, Colombia. 1E-mail: [email protected]; ORCID: 0000-0002-8115-3089 2E-mail: [email protected]; ORCID: 0000-0002-4977-1709 Received: September 19, 2019 Accepted: April 3, 2020 Summary Dental plaque is a complex environment that maintains a balance with certain micro- bial communities; however, this microhabitat can be disturbed by some endogenous species causing disease. An exploratory systematic review was carried out using the PubMed, Scopus, Lilacs, and Science Direct databases, identifying that the thymol, menthol, and eucalyptol compounds present varying antimicrobial activity, intra- and interspecies discordance, and a strong antimicrobial intensity on Aggregatibacter actinomycetemcomitans, Candida albicans, Candida dubliniensis, Enterococcus faecalis, Escherichia coli, Lactobacillus plantarum, and Streptococcus mutans, indicating that these phytochemicals can be considered broad-spectrum antimicrobial substances, with an effect on microorganisms linked to oral diseases. Key words: Oral health, terpenes, phytochemicals. 44 Thymol, menthol and eucalyptol for microbiological control in the oral cavity Resumen Timol, mentol y eucaliptol como agentes para el
    [Show full text]
  • Electronical Supplementary Information Phenolic Hydrogen
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019 Electronical Supplementary Information Phenolic Hydrogen Bond Donors as the Key to the Formation of Non-Ionic Deep Eutectic Solvents: The Quest for Type V DES Dinis O. Abranches, a Mónia A. R. Martins, a,b,c Liliana P. Silva, a Nicolas Schaeffer, a Simão P. Pinhob,c and João A. P. Coutinho*, a a CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810- 193 Aveiro, Portugal b Associate Laboratory LSRE-LCM, Department of Chemical and Biological Technology, Polytechnic Institute of Bragança, 5300-253 Bragança, Portugal c Mountain Research Center – CIMO, Polytechnic Institute of Bragança, 5301-855 Bragança, Portugal * Corresponding author e-mail address: [email protected] (João A. P. Coutinho) Number of Pages: 8 Number of Tables: 2 Number of Figures: 5 1 | Page Experimental Details The SLE phase diagram of the mixture menthol + thymol was determined by Differential Scanning Calorimetry (DSC). First, mixtures were prepared in the full range of compositions using an analytic balance Mettler Toledo XP205. Samples were heated under stirring until a homogenous liquid was formed and stirred in the liquid state for 30 minutes. After cooling at room temperature, samples of 2 – 5 mg were hermetically sealed in aluminium pans and weighed in a micro-analytical balance AD6 (PerkinElmer, precision = 0.002 mg). A Hitachi DSC7000X working at atmospheric pressure was used to acquire the thermal events at 5 K/min and 2 K/min for cooling and heating, respectively. The equipment was previously calibrated with several standards with weight fraction purities higher than 99%.
    [Show full text]
  • District of Columbia, Maryland, and Virginia Marketplace Formulary
    District of Columbia, Maryland, and Virginia Marketplace Formulary Last Update: 09/07/2021 The formulary is a list of drugs covered by your plan. The preferred drugs in the formulary are chosen by a group of Kaiser Permanente physicians and pharmacists known as the Pharmacy and Therapeutics Committee. The Committee meets regularly to evaluate and select drugs that are safe and effective for our members. This formulary applies only to outpatient drugs and self-administered drugs. It does not apply to medical service drugs or medications used in inpatient settings or administered in one of the Kaiser Permanente medical centers. You may have specific exclusions, copays, or coinsurance amounts that are not reflected in the formulary drug list. Please consult your Evidence of Coverage or Membership Agreement for additional information regarding your pharmacy benefits, including any specific limitations or exclusions. Generic, Brand Name and Specialty Drugs Kaiser Permanente covers generic, brand name and specialty drugs at the applicable tier copay or cost share. A generic drug is approved by the Food and Drug Administration (FDA) as having the same active ingredient as the brand name drug. Brand name drugs are manufactured and sold by the pharmaceutical company that originally researched and developed the drug. When the patent on a brand name drug expires, other pharmaceutical companies may then manufacture and sell the FDA- approved generic version of the drug at lower prices. Specialty drugs are high cost, prescription medications used to treat serious or chronic medical conditions and require special handling, administration or monitoring. In most cases, your doctor will prescribe a generic drug if one is available.
    [Show full text]
  • PROVISIONAL PEER-REVIEWED TOXICITY VALUES for P-ISOPROPYLTOLUENE (CASRN 99-87-6)
    EPA/690/R-11/031F l Final 6-16-2011 Provisional Peer-Reviewed Toxicity Values for p-Isopropyltoluene (CASRN 99-87-6) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER Chris Cubbison, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY ICF International 9300 Lee Highway Fairfax, VA 22031 This document was externally peer reviewed under contract to Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). i p-Isopropyltoluene TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS ................................................................................... iii BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1 QUESTIONS REGARDING PPRTVS ...........................................................................................1 INTRODUCTION ...........................................................................................................................2
    [Show full text]
  • Extraction of Thymol from Different Varieties of Thyme Plants Using Green Solvents
    III Iberoamerican Conference on Supercritical Fluids Cartagena de Indias (Colombia), 2013 EXTRACTION OF THYMOL FROM DIFFERENT VARIETIES OF THYME PLANTS USING GREEN SOLVENTS Ivan Angelov1, David Villanueva Bermejo2, Roumiana P. Stateva1, Guillermo Reglero2, Elena Ibañez2 and Tiziana Fornari2 1Institute of Chemical Engineering Bulgarian Academy of Sciences 1113 Sofia, Bulgaria 2Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM). CEI UAM + CSIC. C/Nicolás Cabrera 9 Universidad Autónoma de Madrid 28049 Madrid, España E-mail: [email protected] Abstract. Thyme is a Labiatae plant which essential oil has demonstrated antiseptic and antispasmodic, properties [6, 7]. Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol, isomeric with carvacrol, found in thyme essential oil. These compounds have shown antiinflamatory, immunomodulatory, antioxidant, antibacterial and antifungal properties. [8, 9] In this work, the potential use of different green solvents, namely ethanol, limonene and ethyl lactate to extract thymol from thyme plants is studied. Ethyl lactate and limonene are agrochemical solvents, easily biodegradable, with polarities in the range of acetonitrile and hexane, respectively. Both solvents are recognized as GRAS (generally recognized as safe) and approved by the U.S. Food and Drug Administration as pharmaceutical and food additive. Further, high solubility of thymol in ethyl lactate has been recently determined and reported by the authors [30]. Pressurized liquid extraction (PLE) in an ASE 350 system using the three green liquid solvents at different extraction temperatures (60 ºC, 130 ºC, 200 ºC) was carried out employing Thymus vulgaris as model thyme variety. Then, the extraction of thymol from other thyme varieties (Thymus zygis and Thymus citriodorus) was studied.
    [Show full text]