Thymol, Menthol and Camphor from Indian Sources

Total Page:16

File Type:pdf, Size:1020Kb

Thymol, Menthol and Camphor from Indian Sources THYMOL, MENTHOL AND CAMPHOR IN INDIA : CHOPRA & MUKHERJEE 361 ' sweetmeats, in pan supari' (betel leaf) mix- Articles tures, etc. The ajowan plant has, therefore, Original been grown to a greater or lesser extent all /over India. It is particularly abundant in Bengal, Central India (Indore) and Hyderabad THYMOL, MENTHOL AND CAMPHOrf (Deccan). 7,000 to 8,000 acres of land FROM INDIAN SOURCES Nearly are under cultivation each year in the Nizam's By R. N. CHOPRA, m.a., m.d. (Cantab.) Dominions alone and similar large areas are LIEUTENANT-COLONEL, I.M.S. also stated to be under cultivation in the and the United Provinces. i and Punjab Large quantities also find their way into India through B. m.b. MUKHERJEE, (Cal.) the inland routes from Afghanistan, Baluchistan Indigenous Drugs Enquiry, I. R. F. A., Series No. 35 and Persia. It can in fact be grown in any of the Indian Peninsula and the (From the Department of Pharmacology, School of part country Tropical Medicine, Calcutta) has possibilities of being a rich source of raw material for the of Indeed Thymol, menthol and camphor are well production thymol. this source has been the known in the materia medica of western already exploited by manufacturers as will be seen from the medicine as well as in that of the foreign indigenous of seeds from India between medicine in India. Thymol has been considered quantities exported 1911 and 1918 :? important on account of its powerful antiseptic, Value of germicidal and anthelmintic properties. One T otal the quantity seed of its chief uses in recent years has been in the in cwts. exported exported in ? treatment of hookworm disease. It is also sterling. used as a constituent of largely tooth-pastes 1911-12 15,515 4,583 as a skin and mouth-washes and disinfectant 1912-13 21,650 6,135 in dermatological practice. Menthol is exten- 1913-14 9,784 2,983 sively employed in liniments, spraying lotions 1914-15 7,368 2,736 1915-16 13,062 and in dental is one of the 4,871 practice. Camphor 1916-17 11,093 4,304 commonest remedies and is used in almost 1917-18 3,990 2,765 every household in India for a variety of pur- 1918-19 1,917 2,102 poses. The huge demand for these stearoptenes can, therefore, be easily understood. Large Besides this, Cuminum cyminum may also quantities of these drugs are imported from serve as a subsidiary source of thymol. foreign countries. It will, therefore, be inter- Cuminum cyminum is abundantly cultivated esting to examine the indigenous sources from all over India, particularly in the United Pro- which these drugs can be produced and the vinces and the Punjab as a field or garden crop possibilities of their manufacture in India on a and is exported in large quantities to Ceylon, commercial scale. the Straits Settlements and British East Africa. It contains 3 to 3.5 per cent, of cumin oil whose Thymol chief constituent is cumic or cuminic aldehyde in It is well known that thymol is contained which can be converted artificially into thymol. a number of essential oils occurring in many Irom Carum copticum.?It is common Thymol 1 ' plants distributed all over the world. The most knowledge that ajowan seeds have been dis- important source is the Spanish thyme, tilled in India by crude methods for centuries Thymus vulgaris or Thymus zygis, a small, and the impure thymol produced, known as ' evergreen shrub belonging to the Labiatse ajowan-ka-phul', has been used in the indi- family. It is indigenous in Spain, Portugal, genous medicine. The seeds distilled with water ' France and Italy and is also extensively culti- produce ajowan-ka-arak' which is well known vated in other parts of Europe and America, as a medicine to the people. It was, however, especially in Germany and in New York State. only as a result of the cutting off of foreign in Thymol also occurs in varying proportions supplies of thymol during the war, and the oils from Monarda punctata (American horse- stoppage of the export of seeds from India later, mint), Carum copticum (Indian ajowan), that definite attempts were made to manufac- Ocimum viride (the mosquito plant of West ture the article on a commercial scale. Africa), Ocimum gratissimum (Seychelles), Ajowan seeds from various sources in India Cunila mariana (North America), Mosla jjapo- have been examined for their oil contents. The which nica (Japan), etc. The chief source from seeds from different parts of the country yielded thymol can be produced in India is Carum varying proportions of oil ranging from 2.0 to as copticum. The seeds of this plant, known 3.5 per cent. Seeds obtained from the Kurnool- ' ajowan' seeds, have been used in the indi- Guntakal district of Madras Presidency genous medicine in the treatment of atonic appeared to be the beat variety obtainable in dyspepsia, diarrhoea, colic, flatulence, indigestion India. These seeds were thicker than the The aromatic seeds are exten- and cholera. ordinary seeds and were of a yellow colour and as a in to flavour sively used condiment curries, gave a high yield of oil, i.e., 3.5 per cont. The 362 THE INDIAN MEDICAL GAZETTE [July, 1932 seeds obtained from Northern India yielded of the seeds, however, are grown in India and only 2.07 per cent, of the oil, and the percentage as the export is completely stopped they will of thymol in most of the Indian oils is not have to be utilised or the cultivation will cease. more than 33 to 37 per cent. This is low as Some workers have shown that thymol manu- compared with the yield obtained from the facture in India should not be a failure if the Spanish thyme which is the chief competitor of by-products, e.g., spent seeds, omum water, ' ' the ajowan seeds. Besides this, Carum copti- thymene oil, etc., could be utilised. The spent cum grown in other parts of the world appears seeds contain 15 to 17 per cent, of protein and to give a larger yield of oil. A sample of seeds 25 to 32 per cent, of fat and can easily replace from the Seychelles gave on analysis 9 per ordinary oil-cakes in the fodder of cattle. The cent, and from Montserrat 3.1 per cent, of oil, omum water is already in extensive use as a containing 39 and 54 per cent, of thymol res- carminative, stomachic and stimulant. Thy- pectively. mene oil can be utilised in scenting cheap It would appear from this that the production soaps though it is never likely to be in great of thymol from raw materials at present avail- demand for such a purpose. Moreover better able in India would not be commercially a methods of cultivation are likely to improve successful proposition. Experiments conducted the yield of the oil. If this is done it is pos- in Hyderabad by the Department of Industries sible that with cheap labour and other factors and Commerce of the Nizam's Government present in this country, the production of thymol showed that the maximum yield of the oil was from distillation of ajowan seeds could be not more than 2 per cent, of the weight of the made economically successful. In addition to seeds and the yield of thymol crystals not more ajowan seeds, it will probably be worth while the of than 36.97 per cent, of the weight of the oil. considering possibility manufacture of With these results it does not appear to be. thymol from the ketone, piperitone, in this likely that the manufacture, on a commercial country. Eucalyptus trees grow very well in scale, of thymol will be successful. Manufac- many parts of India and eucalyptus oil is ture of the drug was actually taken up by the already being produced on a commercial scale. Gwalior and the Dhar States. The figures Large tracts of country are available for culti- for yield of the oil and thymol on a large scale vation of eucalyptus, and piperitone could be in Gwalior State are given in the following produced on a large scale. Its conversion into table :? thymol ought not to involve a large outlay of Quantity of Yield of oil Yield of crude capital. The whole question of manufacture fruit in lbs. in lbs. thymol in lbs. needs careful study by experts but, from the 26,076 742.5 321.2 data we have at our disposal, the position 22,227 652.5 269.1 appears to be hopeful. 32,380 943.7 370.5 A perusal of the table will show that the Menthol yield of crude thymol is not very high. The Menthol is obtained chiefly from Mentha manufacture in Dhar State appears not to have piperita or the marsh mint which grows ex- been a commercial success and has been dis- tensively in the British Isles and in the United continued. States of America. Though M. piperita does Commercial aspects of thymol production.? not grow in India, a number of other species Previous to 1914 thymol was chiefly produced of mentha grow quite well. Examples of these from natural sources. With the discovery of are Mentha viridis (spearmint), M. incana cheap methods of synthesis large quantities of (peppermint), M. sativa, M. aquatica and the drug are being synthetised. Several M. arvensis. All these varieties, excepting methods have been devised in Germany, M. arvensis, occur as garden plants and are America and England for manufacturing the sparingly distributed at present. M. arvensis article from crude phenols.
Recommended publications
  • Technical Options for the Mitigation of Direct Methane and Nitrous Oxide Emissions from Livestock: a Review
    Animal (2013), 7:s2, pp 220–234 & Food and Agriculture Organization of the United Nations 2013 animal doi:10.1017/S1751731113000876 Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review - P. J. Gerber1 , A. N. Hristov2, B. Henderson1, H. Makkar1,J.Oh2, C. Lee2, R. Meinen2, F. Montes3,T.Ott2, J. Firkins4, A. Rotz5, C. Dell5, A. T. Adesogan6,W.Z.Yang7, J. M. Tricarico8, E. Kebreab9, G. Waghorn10, J. Dijkstra11 and S. Oosting11 1Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, Vialle delle terme di Caracalla, 00153 Rome, Italy; 2Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA; 3Plant Science Department, The Pennsylvania State University, University Park, PA 16802, USA; 4Department of Animal Sciences, The Ohio State University, Columbus OH 43210, USA; 5Department of Animal Sciences, USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802, USA; 6University of Florida, Gainesville, FL 32608, USA; 7Agriculture and Agri-Food Canada, Lethbridge AB, Canada T1J 4B1; 8Innovation Center for U.S. Dairy, Rosemont, IL 60018, USA; 9Department of Animal Sciences, University of California, Davis, CA 95616, USA; 10DairyNZ, Hamilton 3240, New Zealand; 11Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands (Received 28 February 2013; Accepted 15 April 2013) Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed.
    [Show full text]
  • Excluded Drug List
    Excluded Drug List The following drugs are excluded from coverage as they are not approved by the FDA ACTIVE-PREP KIT I (FLURBIPROFEN-CYCLOBENZAPRINE CREAM COMPOUND KIT) ­ ACTIVE-PREP KIT II (KETOPROFEN-BACLOFEN-GABAPENTIN CREAM COMPOUND KIT) ­ ACTIVE-PREP KIT III (KETOPROFEN-LIDOCAINE-GABAPENTIN CREAM COMPOUND KIT) ­ ACTIVE-PREP KIT IV (TRAMADOL-GABAPENTIN-MENTHOL-CAMPHOR CREAM COMPOUND KIT) ­ ACTIVE-PREP KIT V (ITRACONAZOLE-PHENYTOIN SODIUM CREAM CMPD KIT) ­ ADAZIN CREAM (BENZO-CAPSAICIN-LIDO-METHYL SALICYLATE CRE) ­ AFLEXERYL-LC PAD (LIDOCAINE-MENTHOL PATCH) ­ AFLEXERYL-MC PAD (CAPSAICIN-MENTHOL TOPICAL PATCH) ­ AIF #2 DRUG PREPERATION KIT (FLURBIPROFEN-GABAPENT-CYCLOBEN-LIDO-DEXAMETH CREAM COMPOUND KIT) ­ AGONEAZE (LIDOCAINE-PRILOCAINE KIT) ­ ALCORTIN A (IODOQUINOL-HYDROCORTISONE-ALOE POLYSACCHARIDE GEL) ­ ALEGENIX MIS (CAPSAICIN-MENTHOL DISK) ­ ALIVIO PAD (CAPSAICIN-MENTHOL PATCH) ­ ALODOX CONVENIENCE KIT (DOXYCYCLINE HYCLATE TAB 20 MG W/ EYELID CLEANSERS KIT) ­ ANACAINE OINT (BENZOCAINE OINT) ­ ANODYNZ MIS (CAPSAICIN-MENTHOL DISK) ­ APPFORMIN/D (METFORMIN & DIETARY MANAGEMENT CAP PACK) ­ AQUORAL (ARTIFICIAL SALIVA - AERO SOLN) ­ ATENDIA PAD (LIDOCAINE-MENTHOL PATCH) ­ ATOPICLAIR CRE (DERMATOLOGICAL PRODUCTS MISC – CREAM) ­ Page 1 of 9 Updated JANUARY 2017 Excluded Drug List AURSTAT GEL/CRE (DERMATOLOGICAL PRODUCTS MISC) ­ AVALIN-RX PAD (LIDOCAINE-MENTHOL PATCH) ­ AVENOVA SPRAY (EYELID CLEANSER-LIQUID) ­ BENSAL HP (SALICYLIC ACID & BENZOIC ACID OINT) ­ CAMPHOMEX SPRAY (CAMPHOR-HISTAMINE-MENTHOL LIQD SPRAY) ­ CAPSIDERM PAD (CAPSAICIN-MENTHOL
    [Show full text]
  • Pre-Validation of an Acute Inhalation Toxicity Assay Using the Epiairway in Vitro Human Airway Model
    Pre-Validation of an Acute Inhalation Toxicity Assay Using the EpiAirway In Vitro Human Airway Model George R. Jackson, Jr., Michelle Debatis, Anna G. Maione, Patrick J. Hayden Exposure to potentially dangerous chemicals can occur through inhalation. UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 2 Regulatory systems for classifying the acute inhalation toxicity of chemicals ≤ 0.05 mg/l > 0.05 ≤ 0.5 mg/l > 0.5 ≤ 2 mg/l > 2 mg/l Respirator Use Required 3 Regulatory systems for classifying the acute inhalation toxicity of chemicals 4 OECD 403/436 is the currently accepted test method for determining acute inhalation toxicity OECD Test Guidelines 403/436: In vivo rat LD50 test (dose at which 50% of the animals die) 4 hour exposure 14 Days Examination: - Death -Signs of toxicity -Necropsy should be performed (not always reported) Nose/Head only (preferred) Whole body Repeat stepwise with additional concentrations as necessary 5 Our goal is to develop & validate an in vitro test for acute inhalation toxicity UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 6 The EpiAirway Model EpiAirway is an in vitro 3D organotypic model of human tracheal/bronchial tissue. - Constructed from primary cells - Highly reproducible - Differentiated epithelium at the air-liquid interface - Beating cilia - Mucus secretion - Barrier function - Physiologically relevant & predictive of the human outcome Air Cilia Differentiated epithelium Microporous membrane Media 7 EpiAirwayTM acute inhalation toxicity test method Prepare 4-point dose Apply chemical to Incubate for 3 hours Examination: curve of chemical in the apical surface - Tissue viability (MTT) dH2O or corn oil Advantages of using the in vitro EpiAirway test: 1.
    [Show full text]
  • Thymol Decreases Apoptosis and Carotid Inflammation Induced by Hypercholesterolemia Through a Discount in Oxidative Stress
    http://www.cjmb.org Open Access Original Article Crescent Journal of Medical and Biological Sciences Vol. 4, No. 4, October 2017, 186–193 eISSN 2148-9696 Thymol decreases apoptosis and carotid inflammation induced by hypercholesterolemia through a discount in oxidative stress Roshanak Bayatmakoo1, Nadereh Rashtchizadeh2*, Parichehreh Yaghmaei1, Mehdi Farhoudi3, Pouran Karimi3 Abstract Objective: Atherosclerosis sclerosis is a chronic inflammatory disease that can lead to cardiovascular and cerebrovascular disorders that are generally along with hypercholesterolemia and oxidative stress. Various surveys have shown that thymol is a polyphenolic compound with anti-inflammatory and antioxidant properties. This study aimed to investigate the anti- inflammatory and antiapoptotic effects of thymol on carotid tissue of hypercholesterolemic rats. Materials and Methods: Forty male Wistar rats were randomly divided into 4 groups with 10 members each (n = 10): a control group with a normal diet (ND), a group with a high-cholesterol (2%) diet (HD), a group with a high-cholesterol diet combined with thymol (24 mg/kg HD + T), and a group with a thymol diet (T). After preparing serum from peripheral blood of rats, lipid measurements were obtained, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), by using a colorimetric method; the levels of oxidized LDL (OxLDL) were obtained through enzyme-linked immunosorbent assay (ELISA). The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant enzymes, as well as the concentrations of malondialdehyde (MDA) and serum total antioxidant capacity (TAC), were determined with the use of colorimetric methods. The protein expressions of Bcl2 and cleaved caspase 3 and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in rat carotid tissue were determined by an immunoblotting method.
    [Show full text]
  • Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach
    Article Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach Justyna Maliszewska 1,*, Milena Jankowska 2, Hanna Kletkiewicz 1, Maria Stankiewicz 2 and Justyna Rogalska 1 1 Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (H.K.); [email protected] (J.R.) 2 Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland; [email protected] (M.J.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-56611-44-63 Academic Editor: Pin Ju Chueh Received: 5 November 2018; Accepted: 17 December 2018; Published: 18 December 2018 Abstract: Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach’s thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature.
    [Show full text]
  • The Chemotaxonomy of Common Sage (Salvia Officinalis)
    medicines Article The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents Jonathan D. Craft, Prabodh Satyal and William N. Setzer * Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] (J.D.C.); [email protected] (P.S.) * Correspondence: [email protected]; Tel.: +1-256-824-6519 Academic Editors: João Rocha and James D. Adams Received: 2 May 2017; Accepted: 26 June 2017; Published: 29 June 2017 Abstract: Background: Common sage (Salvia officinalis) is a popular culinary and medicinal herb. A literature survey has revealed that sage oils can vary widely in their chemical compositions. The purpose of this study was to examine sage essential oil from different sources/origins and to define the possible chemotypes of sage oil. Methods: Three different samples of sage leaf essential oil have been obtained and analyzed by GC-MS and GC-FID. A hierarchical cluster analysis was carried out on 185 sage oil compositions reported in the literature as well as the three samples in this study. Results: The major components of the three sage oils were the oxygenated monoterpenoids α-thujone (17.2–27.4%), 1,8-cineole (11.9–26.9%), and camphor (12.8–21.4%). The cluster analysis revealed five major chemotypes of sage oil, with the most common being a α-thujone > camphor > 1,8-cineole chemotype, of which the three samples in this study belong. The other chemotypes are an α-humulene-rich chemotype, a β-thujone-rich chemotype, a 1,8-cineole/camphor chemotype, and a sclareol/α-thujone chemotype.
    [Show full text]
  • Estrogen Pharmacology. I. the Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man
    Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) in Man Mark N. Mueller, Attallah Kappas J Clin Invest. 1964;43(10):1905-1914. https://doi.org/10.1172/JCI105064. Research Article Find the latest version: https://jci.me/105064/pdf Journal of Clinical Investigation Vol. 43, No. 10, 1964 Estrogen Pharmacology. I. The Influence of Estradiol and Estriol on Hepatic Disposal of Sulfobromophthalein (BSP) inMan* MARK N. MUELLER t AND ATTALLAH KAPPAS + WITH THE TECHNICAL ASSISTANCE OF EVELYN DAMGAARD (From the Department of Medicine and the Argonne Cancer Research Hospital,§ the University of Chicago, Chicago, Ill.) This report 1 describes the influence of natural biological action of natural estrogens in man, fur- estrogens on liver function, with special reference ther substantiate the role of the liver as a site of to sulfobromophthalein (BSP) excretion, in man. action of these hormones (5), and probably ac- Pharmacological amounts of the hormone estradiol count, in part, for the impairment of BSP dis- consistently induced alterations in BSP disposal posal that characterizes pregnancy (6) and the that were shown, through the techniques of neonatal period (7-10). Wheeler and associates (2, 3), to result from profound depression of the hepatic secretory Methods dye. Chro- transport maximum (Tm) for the Steroid solutions were prepared by dissolving crystal- matographic analysis of plasma BSP components line estradiol and estriol in a solvent vehicle containing revealed increased amounts of BSP conjugates 10% N,NDMA (N,N-dimethylacetamide) 3 in propylene during estrogen as compared with control pe- glycol. Estradiol was soluble in a concentration of 100 riods, implying a hormonal effect on cellular proc- mg per ml; estriol, in a concentration of 20 mg per ml.
    [Show full text]
  • Effects of Camphor Oil Addition to Diesel on the Nanostructures and Oxidative Reactivity of Combustion-Generated Soot
    Effects of camphor oil addition to diesel on the nanostructures and oxidative reactivity of combustion-generated soot Item Type Article Authors Morajkar, Pranay; Guerrero Pena, Gerardo D.J.; Raj, Abhijeet; Elkadi, Mirella; Rahman, Ramees K.; Salkar, Akshay V.; Pillay, Avinash; Anjana, Tharalekshmy; Cha, Min Suk Citation Morajkar, P., Guerrero Pena, G. D. J., Raj, A., Elkadi, M., Rahman, R. K., Salkar, A. V., … Cha, M. S. (2019). Effects of camphor oil addition to diesel on the nanostructures and oxidative reactivity of combustion-generated soot. Energy & Fuels. doi:10.1021/ acs.energyfuels.9b03390 Eprint version Post-print DOI 10.1021/acs.energyfuels.9b03390 Publisher American Chemical Society (ACS) Journal Energy & Fuels Rights This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy & Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/ acs.energyfuels.9b03390. Download date 28/09/2021 21:36:33 Link to Item http://hdl.handle.net/10754/660017 1 Effects of camphor oil addition to diesel on the nanostructures and 2 oxidative reactivity of combustion-generated soot 3 Pranay P. Morajkara,b, Gerardo D.J. Guerrero Peñac, Abhijeet Raja,*, Mirella Elkadid, Ramees 4 K. Rahmane, Akshay V. Salkarb, Avin Pillayd, Tharalekshmy Anjanaa, Min Suk Chac 5 aDepartment of Chemical Engineering, The Petroleum Institute, Khalifa University of Science 6 & Technology, Abu Dhabi, U.A.E 7 bSchool of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India 8 cClean Combustion Research Centre, King Abdullah University of Science and Technology, 9 Thuwal, Saudi Arabia 10 dDepartment of Chemistry, Khalifa University of Science & Technology, Abu Dhabi, U.A.E 11 eDepartment of Chemical Engineering, University of Central Florida, Orlando, US 12 13 Abstract 14 Less viscous and low cetane (LVLC) fuels have emerged as the promising alternative fuels or 15 additives to fossil fuels.
    [Show full text]
  • Thesis Has Been Carried out in the School of Pharmacy and Pharmacology and in the School of Biology and Biochemistry, Under the Supervision of Dr Michael D
    University of Bath PHD Inhibitors of DNA repair processes as potentiating drugs in cancer radiotherapy and chemotherapy Watson, Corrine Yvonne Award date: 1997 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 Inhibitors of DNA Repair Processes as Potentiating Drugs in Cancer Radiotherapy and Chemotherapy submitted by Corrine Yvonne Watson for the degree of PhD of the University of Bath 1997 The research work in this thesis has been carried out in the School of Pharmacy and Pharmacology and in the School of Biology and Biochemistry, under the supervision of Dr Michael D. Threadgill and Dr William J. D. Whish. COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.
    [Show full text]
  • Inhibitory Effects of Monoterpenes on Human TRPA1 and the Structural Basis of Their Activity
    J Physiol Sci (2014) 64:47–57 DOI 10.1007/s12576-013-0289-0 ORIGINAL PAPER Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity Masayuki Takaishi • Kunitoshi Uchida • Fumitaka Fujita • Makoto Tominaga Received: 26 July 2013 / Accepted: 2 September 2013 / Published online: 12 October 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract TRPA1, one of the transient receptor potential on these identified TRPA1 antagonists could lead to new channels, has been reported to be involved in nociception pain therapeutics. and inflammatory pain, suggesting that this molecule could be a promising target for the development of analgesic Keywords Monoterpene Á Pain relief Á TRPA1 Á agents. We screened several monoterpene analogs of Hydroxyl group camphor, which is known to inhibit human (h) TRPA1, to identify more effective naturally occurring TRPA1 antag- onists. Borneol, 2-methylisoborneol, and fenchyl alcohol Introduction exhibited higher inhibitory effects on hTRPA1 activity than either camphor or 1,8-cineole. Our results revealed Transient receptor potential (TRP) channels respond to a further that the S873, T874, and Y812 residues of hTRPA1 wide variety of sensory stimuli, including temperature, were involved in the inhibitory effects, suggesting that the nociceptive compounds, touch, osmolarity, and phero- hydroxyl group in the six-membered ring of the inhibitors mones [1–3]. TRPA1, one of the TRP channels, functions may be interacting with these amino acids. Further research as a receptor that responds to noxious cold temperatures and pungent compounds, including allyl isothiocyanate (AITC), a component of mustard oil [4–8].
    [Show full text]
  • Avoiding Medication Mayhem
    Avoiding Medication Mayhem Penny Miller, BSc.(Pharm.), M.A. Senior Instructor, Faculty of Pharmaceutical Sciences and Department of Family Practice, UBC Pharmacotherapeutic Consultant, Lifemark Health Chronic pain Program Disclosure I have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation. Goal: Provide the clinician with practical information to support the medication management of patients with chronic pain. Learning Objectives: At the end of this session, the clinician will demonstrate improved abilities to: 1. Describe the rationale, efficacy, benefits and risks associated with non-steroidal anti-inflammatory agents, opioids, antidepressants and anticonvulsants in the treatment of chronic pain. 2. Identify appropriate combinations of medications. 3. Outline the important reasons for slow upward titrations and slow tapers off medications. 4. Discuss effective monitoring for the efficacy and side effects of drugs to meet the outcomes of increased functioning, improved sleep and reduced pain. Case of Ben 45 y.o., construction worker • Low back pain x 7 months after a fall at work • Constant throbbing ache in low back • Radiates down right buttock & thigh, at times extends to right ankle (burning, shooting, electric pain) • Pain level on good day 5/10, on bad day 8/10, average 7/10 (over past week) • Sleep 3 hours nightly interrupted 3 times. • Diagnosis: Lumbar radiculopathy (neuropathy with nerve root
    [Show full text]
  • Cinnamic Aldehyde
    CINNAMIC ALDEHYDE Your patch test result indicates that you have a contact allergy to cinnamic aldehyde. This contact allergy may cause your skin to react when it is exposed to this substance although it may take several days for the symptoms to appear. Typical symptoms include redness, swelling, itching and fluid-filled blisters. Where is cinnamic aldehyde found? Cinnamic aldehyde is the chemical compound that gives cinnamon its flavor and odor. Cinnamic aldehyde occurs naturally in the bark of cinnamon, camphor, and cassia trees. These trees are the natural source of cinnamon, and the essential oil of cinnamon bark is about 90% cinnamic aldehyde. It is used as a flavoring in food items like chewing gum, ice cream, candy, and beverages and in some perfumes of natural, sweet, or fruity scents. Cinnamic aldehyde is also sometimes used as a fungicide and its scent is known to repel animals like cats and dogs. How can you avoid contact with cinnamic aldehyde? Avoid products that list any of the following names in the ingredients: • 2-Propenal, 3-phenyl- • Cinnamic aldehyde • 3-Phenyl-2-propenaldehyde • Cinnamylaldehyde • CAS RN: 104-55-2 • Cinnemaldehyde • Benzylideneacetaldehyde What are some products that may contain cinnamic aldehyde? Corrosion Inhibitor Fungicide: Food Flavoring: • Root Treatment • Beverages Insecticide - Cola - Vermuth Personal Care Products: • Chewing gum • Dental Floss - Ban-Smoke • Mouthwash - Big Red • Oral anaesthetics - Dentyne Fire • Toothpastes - Slim-mint Pet Care Products: • Candy • Hoffman Dog & Cat Repellent • Ice cream • Nilodor Deodorizing Cleaner Concentrate, Original Fragrances (natural, sweet, or fruity scents): • Nilodor Deodorizing Ferret Shampoo • Almond • Nilodor Nilolitter Cat Box Additive • Apricot • Butterscotch For additional information about products that might contain cinnamic aldehyde, go to the Household Product Database online (http:/ householdproducts.nlm.nih.gov) at the United States National Library of Medicine.
    [Show full text]