Safety Data Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Safety Data Sheet SAFETY DATA SHEET SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Name of the substance Barium titanate (BaTiO3) Identification number 056-002-00-7 (Index number) Registration number - Document number 1PL Synonyms BARIUM TITANATE * Barium titanium oxide (BaTiO3) * Barium(IV) titanate Materion Code 1PL Issue date 01-August-2019 1.3. Details of the supplier of the safety data sheet Supplier Company name Materion Advanced Chemicals Inc. Address 407 N. 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Division Milwaukee Telephone 414.212.0257 e-mail [email protected] Contact person Laura Hamilton 1.4. Emergency telephone number Version number 01 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Not available. Uses advised against None known. SECTION 2: Hazards identification 2.1. Classification of the substance or mixture The product has been assessed and/or tested for its physical, health and environmental hazards following the regulations ABNT NBR 14725-4: (Safety data sheet for chemicals (SDS)) (Aug. 26, 2009) The substance has been assessed and/or tested for its physical, health and environmental hazards and the following classification applies. According to GHS criteria. Classification according to Regulation (EC) No 1272/2008 as amended Hazard summary CAUTION Harmful if inhaled. Harmful if absorbed through skin. Harmful by inhalation and if swallowed. 2.2. Label elements Label according to Regulation (EC) No. 1272/2008 as amended Contains: Barium titanate Hazard pictograms Signal word Warning Hazard statements H302 Harmful if swallowed. H302 + H332 Harmful if swallowed or if inhaled Precautionary statements Prevention P261 Avoid breathing dust/fume. P264 Wash thoroughly after handling. P270 Do not eat, drink or smoke when using this product. Material name: Barium titanate (BaTiO3) SDS EU 1PL Version #: 01 Issue date: 01-August-2019 1 / 8 P271 Use only outdoors or in a well-ventilated area. Response P301 + P312 If swallowed: Call a poison centre/doctor if you feel unwell. P304 + P340 If inhaled: Remove person to fresh air and keep comfortable for breathing. P311 Call a poison centre/doctor. P330 Rinse mouth. Storage Not available. Disposal P501 Dispose of contents/container in accordance with local/regional/national/international regulations. Supplemental label None. information 2.3. Other hazards The Safety Information Sheet Chemicals of hazardous chemical can be obtained through phone, email or on the company website. SECTION 3: Composition/information on ingredients 3.1. Substances General information Chemical name % CAS-No. / EC REACH Registration No. Index No. Notes No. Barium titanate 100 - 056-002-00-7 Classification: Acute Tox. 4;H302 List of abbreviations and symbols that may be used above CLP: Regulation No. 1272/2008. DSD: Directive 67/548/EEC. M: M-factor vPvB: very persistent and very bioaccumulative substance. PBT: persistent, bioaccumulative and toxic substance. #: This substance has been assigned Community workplace exposure limit(s). Composition comments The full text for all R- and H-phrases is displayed in section 16. SECTION 4: First aid measures General information Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves. In the case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). If you feel unwell, seek medical advice (show the label where possible). Show this safety data sheet to the doctor in attendance. In case of shortness of breath, give oxygen. Keep victim warm. Keep victim under observation. 4.1. Description of first aid measures Inhalation Remove victim to fresh air and keep at rest in a position comfortable for breathing. Move to fresh air. Oxygen or artificial respiration if needed. Do not use mouth-to-mouth method if victim inhaled the substance. Induce artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Call a physician or poison control centre immediately. Skin contact Remove and isolate contaminated clothing and shoes. Wash the skin immediately with soap and water. Immediately flush skin with plenty of water. Get medical attention immediately. Wash clothing separately before reuse. Eye contact Immediately flush eyes with plenty of water for at least 15 minutes. Rinse with water. Remove contact lenses, if present and easy to do. Continue rinsing. Get medical attention immediately. Get medical attention if irritation develops and persists. Ingestion IF SWALLOWED: Immediately call a POISON CENTRE or doctor/physician. If swallowed, seek medical advice immediately and show this container or label. IF SWALLOWED: Call a POISON CENTRE or doctor/physician if you feel unwell. Rinse mouth. Rinse mouth thoroughly. Do not induce vomiting without advice from poison control center. If vomiting occurs, keep head low so that stomach content doesn't get into the lungs. Do not use mouth-to-mouth method if victim ingested the substance. Induce artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. 4.2. Most important Not available. symptoms and effects, both acute and delayed 4.3. Indication of any Provide general supportive measures and treat symptomatically. Treat symptomatically. In case of immediate medical attention shortness of breath, give oxygen. Oxygen, if needed. Keep victim warm. Keep victim under and special treatment observation. Symptoms may be delayed. needed Material name: Barium titanate (BaTiO3) SDS EU 1PL Version #: 01 Issue date: 01-August-2019 2 / 8 SECTION 5: Firefighting measures General fire hazards No unusual fire or explosion hazards noted. 5.1. Extinguishing media Suitable extinguishing Water. media Unsuitable extinguishing None known. media 5.2. Special hazards arising Not available. from the substance or mixture 5.3. Advice for firefighters Special protective Wear suitable protective equipment. equipment for firefighters Special firefighting In the event of fire, cool tanks with water spray. procedures Specific methods Cool containers exposed to flames with water until well after the fire is out. SECTION 6: Accidental release measures 6.1. Personal precautions, protective equipment and emergency procedures For non-emergency Local authorities should be advised if significant spillages cannot be contained. Keep unnecessary personnel personnel away. Keep people away from and upwind of spill/leak. Keep out of low areas. Wear appropriate protective equipment and clothing during clean-up. Fully encapsulating, vapour protective clothing should be worn for spills and leaks with no fire. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ventilate closed spaces before entering them. For emergency Keep unnecessary personnel away. responders 6.2. Environmental Prevent further leakage or spillage if safe to do so. Avoid discharge into drains, water courses or precautions onto the ground. 6.3. Methods and material for Stop the flow of material, if this is without risk. Dike far ahead of spill for later disposal. Prevent containment and cleaning up entry into waterways, sewer, basements or confined areas. Following product recovery, flush area with water. 6.4. Reference to other Not available. sections SECTION 7: Handling and storage 7.1. Precautions for safe Minimise dust generation and accumulation. Do not taste or swallow. Avoid breathing dust. Avoid handling contact with skin. Avoid contact with eyes. Avoid prolonged exposure. Avoid contact with clothing. Use only outdoors or in a well-ventilated area. Wear personal protective equipment. When using, do not eat, drink or smoke. Wash hands thoroughly after handling. Handle and open container with care. 7.2. Conditions for safe CAUTION storage, including any Keep container tightly closed. Store in a cool, dry place out of direct sunlight. Store in a incompatibilities well-ventilated place. Keep out of the reach of children. Use care in handling/storage. 7.3. Specific end use(s) Not available. SECTION 8: Exposure controls/personal protection 8.1. Control parameters Occupational exposure limits No exposure limits noted for ingredient(s). Biological limit values No biological exposure limits noted for the ingredient(s). Recommended monitoring Follow standard monitoring procedures. procedures Derived no effect levels Not available. (DNELs) Predicted no effect Not available. concentrations (PNECs) 8.2. Exposure controls Appropriate engineering Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should controls be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level. Material name: Barium titanate (BaTiO3) SDS EU 1PL Version #: 01 Issue date: 01-August-2019 3 / 8 Individual protection measures, such as personal protective equipment General information Not available. Eye/face protection Chemical goggles are recommended. Face-shield. Eye wash fountain is recommended. Skin protection - Hand protection Wear protective gloves. Not normally needed. - Other Wear protective gloves. Wear chemical protective equipment that is specifically recommended by
Recommended publications
  • Batio3 Based Materials for Piezoelectric and Electro-Optic Applications
    BaTiO3 based materials for Piezoelectric and Electro-Optic Applications by Ytshak Avrahami B.Sc. Materials Science and Engineering, B.A. Physics (Cum Laude) Technion – Israel Institute of Technology, 1995 M.Sc. Materials Science and Engineering Technion – Israel Institute of Technology, 1997 SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ELECTRONIC, PHOTONIC AND MAGNETIC MATERIALS JANUARY 2003 © 2003 Massachusetts Institute of Technology All rights reserved 2 Abstract BaTiO3 based materials for Piezoelectric and Electro-Optic Applications by Ytshak Avrahami Submitted to the Department of Materials Science and Engineering on February 13, 2003 in Partial Fulfillment of the Requirements for the Degree of Doctor OF Philosophy in Electronic, Photonic and Magnetic Materials ABSTRACT Ferroelectric materials are key to many modern technologies, in particular piezoelectric actuators and electro-optic modulators. BaTiO3 is one of the most extensively studied ferroelectric materials. The use of BaTiO3 for piezoelectric applications is, however, limited due to the small piezoelectric coefficient of the room temperature-stable tetragonal phase. Furthermore, research on BaTiO3 for integrated optics applications remains sparse. In this work Zr-, Hf-, and KNb- doped BaTiO3 materials were prepared in a composition range that stabilizes the rhombohedral phase. These materials were prepared as bulk polycrystals using a standard solid-state reaction technique in order to test the piezoelectric and dielectric properties. Some compositions were then chosen for thin film deposition. The films were deposited using pulsed laser deposition on MgO and SOI substrates. Growth orientation, remnant strain and optical properties were then measured.
    [Show full text]
  • 1. Introduction Barium Titanate (Batio3) Is a Versatile Elctroceram
    ARCHIVESOFMETALLURGYANDMATERIALS Volume 54 2009 Issue 4 B. WODECKA-DUŚ∗, D. CZEKAJ∗ FABRICATION AND DIELECTRIC PROPERTIES OF DONOR DOPED BaTiO3 CERAMICS OTRZYMYWANIE I WŁAŚCIWOŚCI DIELEKTRYCZNE DONOROWO DOMIESZKOWANEJ CERAMIKI BaTiO3 Barium titanate BaTiO3 is a common ferroelectric material which adopts the perovskite structure type ABO3. It is widely utilized to manufacture a variety of electronic components. In the present study lanthanum-doped BaTiO3 compositions with ◦ x=0.1 mol.% and x=0.3 mol.%, in Ba1−xLaxTi1−x/4O3 were prepared by free sintering method in air at temperature T=1350 C. The grain size distribution and morphology of the powders were studied as well as the X-ray diffraction analysis was performed to confirm formation of the desired crystalline structure. Temperature dependence of dielectric permittivity was studied in the temperature range of ferroelectric-paraelectric phase transition. Keywords: Ba1−xLaxTi1−x/4O3, donor doped, dielectric permittivity, ferroelectric ceramics Tytanian baru BaTiO3 jest przedstawicielem tlenowooktaedrycznych związków o strukturze krystalicznej typu perowskitu ABO3. Materiał ten charakteryzuje się wieloma interesującymi właściwościami, które można modyfikować poprzez zmianę składu chemicznego oraz optymalizację technologii otrzymywania. Przedmiotem niniejszej pracy było otrzymanie metodą swobodnego spiekania (T=1350◦C) na bazie półprzewodnikowego BaTiO3, domieszkowanego donorowo lantanem, roztworu stałego o składzie Ba1−xLaxTi1−x/4O3, dla koncentracji x=0,1 mol.% i x=0,3 mol.%. Celem zoptymalizowania warunków technologicznych przeprowadzono analizę ziarnową proszków. Wykorzy- stując metodę dyfrakcji promieni rentgenowskich (metoda XRD) zbadano strukturę krystaliczną, przeprowadzono identyfikację fazową oraz wyznaczono średni wymiar krystalitów otrzymanego roztworu stałego o różnej zawartości lantanu. Zbadano również temperaturowe zależności stałych dielektrycznych w obszarze przemiany fazowej oraz określono parametry ferroelektryczne otrzymanej elektroceramiki.
    [Show full text]
  • Preparation of Barium Strontium Titanate Powder from Citrate
    APPLIED ORGANOMETALLIC CHEMISTRY Appl. Organometal. Chem. 13, 383–397 (1999) Preparation of Barium Strontium Titanate Powder from Citrate Precursor Chen-Feng Kao* and Wein-Duo Yang Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan TiCl4 or titanium isopropoxide reacted with INTRODUCTION citric acid to form a titanyl citrate precipitate. Barium strontium citrate solutions were then BaTiO3 is ferroelectric and piezoelectric and has added to the titanyl citrate reaction to form gels. extensive applications as an electronic material. It These gels were dried and calcined to (Ba,Sr)- can be used as a capacitor, thermistor, transducer, TiO3 powders. The gels and powders were accelerometer or degausser of colour television. characterized by DSC/TGA, IR, SEM and BaTiO3 doped with strontium retains its original XRD analyses. These results showed that, at characteristics but has a lower Curie temperature 500 °C, the gels decomposed to Ba,Sr carbonate for positive temperature coefficient devices under and TiO2, followed by the formation of (Ba,Sr)- various conditions. TiO3. The onset of perovskite formation oc- Besides solid-state reactions, chemical reactions curred at 600 °C, and was nearly complete at have also been used to prepare BaTiO3 powder. 1 1000 °C. Traces of SrCO3 were still present. Among them the hydrolysis of metal alkoxide , The cation ratios of the titanate powder oxalate precipitation in ethanol2, and alcoholic prepared in the pH range 5–6 were closest to dehydration of citrate solution3 are among the more the original stoichiometry. Only 0.1 mol% of the attractive methods. In 1956 Clabaugh et al.4 free cations remained in solution.
    [Show full text]
  • Synthesis of Barium Titanate from Titanyl Acylate Precursor by Sol-Precipitate Method Thandar Win', Kyaw Naing2 and Khin Mar Tunj
    MM 1000115 Jour. Myan. Acad. Arts & Sc. 2008 Vol. VI. No. 1 Synthesis of Barium Titanate from Titanyl Acylate Precursor by Sol-precipitate Method Thandar Win', Kyaw Naing2 and Khin Mar TunJ Abstract Nanometersize barium titanates (BaTiO3:BT) powders can be obtained by sol-precipitate method in the presence of polyoxyethylene (20) sorbiton monooleate (Tween-80) as a polymeric surface modifier in a strong alkaline solution (pH > 13) . FT-IR, TG/ DTA, SEM and XRD were used to investigate the effects of the surfactant influence on the morphology of the obtained BaTiO3 powders. With adding surfactant, a slower rate of hydroiyzatibn is observed and the rate of condensation is slower. The addition of Tween-80 surfactant in general leads to the formation of smaller particle size of BaTiO3 (70-100 nm). Without adding surfactant, larger particle size of BaTiO3 (100-200 nm) was obtained. The nanometersize BaTiO3 powders were readily sintered at 1000-1200°C. Raman-active modes of tetragonal phase BT were detected from Raman spectra of BaTiO3 between 800°C to 1200°C. Key words: Barium Titanates, sol-precipitate method, Tween-80, tetragonal-phase, Raman Spectra Introduction Barium titanate crystallizes in a perovskite structure is an important electronic ceramic. Barium titanate (BaTi(>3 : BT) naoncrystals have great advantages over micrometer size ceramic powders when the thickness of a single ceramic layer decreases to less than 2fxm. Low temperature synthesis has provided on exciting possibility for high purity, homogeneous, and ultrafine BaTiO3 nonoparticles. BT nonocrystals have been synthesized by Using a hydrothermal method, sol-gel processing, the oxalate route, microwave heating, a micro-emulsion process and a polymeric precursor method.
    [Show full text]
  • Thermogravimetric Study of Barium Titanate James Nicholas Lingscheit Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 Thermogravimetric study of barium titanate James Nicholas Lingscheit Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Lingscheit, James Nicholas, "Thermogravimetric study of barium titanate " (1973). Retrospective Theses and Dissertations. 5029. https://lib.dr.iastate.edu/rtd/5029 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Temperature-Stable Barium Titanate Ceramics
    Electrocomponent Science and Technology (C)Gordon and Breach Science Publishers Ltd. 1976, Vol. 2, pp. 241-247 Printed in Great Britain TEMPERATURE-STABLE BARIUM TITANATE CERAMICS CONTAINING NIOBIUM PENTOXIDE IAN BURN Research and Development Laboratories, Sprague Electric Company, North Adams, Massachusetts U.S.A. (Received May 27, 19 75) Niobium is known to lower the Curie point and broaden the permittivity peak of barium titanate. However, the distribution of niobium in sintered barium titanate is often not homogeneous, being influenced by such preparation variables as large cation/small cation stoichiometry and firing conditions. In addition to these factors, it was found that, at least up to about 5 mol % Nb, the distribution of niobium in the barium titanate grains could be regulated by small amounts (<1 mol %) of oxides of Co, Mg, Ni or Mn. These oxides appear to form niobates that produce high permittivity solid solutions in the "skins" of the barium titanate grains and permit dielectrics to be obtained with permittivity K 2000,) stable to within +-10% over the temperature range -55C to 125C. INTRODUCTION principal impurities. A small amount of work was also done with a similar barium titanate $ with comparable The influence of niobium on the temperature impurity level but small BaO/TiO2 ratio (0.99). Up dependence of the permittivity of barium titanate has to about 5 mol % niobium oxide (NbO2.s) was added been described by several authors. -a Some to the barium titanate powder together with various inconsistencies in the earlier data 1,2 have been other oxides in amounts less than 1 mol %.
    [Show full text]
  • Preparation of Homogeneously-Doped Barium Titanate
    Preparation of homogeneously-doped barium titanate Sven van der Gijp Gijp, Sven van der Preparation of homogeneously-doped barium titanate ISBN: 90-36511798 Copyright © Sven van der Gijp, Enschede, The Netherlands PREPARATION OF HOMOGENEOUSLY-DOPED BARIUM TITANATE PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. F.A. van Vught, volgens besluit van het College voor Promoties in het openbaar te verdedigen op donderdag 10 september 1998 te 13.15 uur. door Sven van der Gijp geboren op 27 maart 1971 te Amstelveen dit proefschrift is goedgekeurd door de promotor prof. dr. ir. H. Verweij en de assistent promotor dr. A.J.A. Winnubst The investigations described in this thesis were supported financially by Philips. Summary Doped barium titanate is used frequently in several types of electrical devices. The electrical behaviour of barium titanate ceramics strongly depend on the composition and the microstructure. In this thesis mainly the application of zirconium doped barium titanate as a pulse-generating device is described. Next to this also the application of barium titanate in multilayer ceramic capacitors is briefly discussed. Finally the prepa- ration of homogeneously doped barium titanate powder is described as well as the mi- crostructure and the related properties of the ceramic. In chapter 1 the ferroelectric behaviour of barium titanate as well as the influence of dopants on the dielectric behaviour and more specific on the position of the Curie- temperature are described. The physical background on the use of barium titanate for application in lamp starters and in multilayer ceramic capacitors is also discussed.
    [Show full text]
  • History of the First Ferroelectric Oxide, Batio3
    History of the First Ferroelectric Oxide, BaTiO 3 C.A. Randall, R.E. Newnham, and L.E. Cross Materials Research Institute The Pennsylvania State University University Park, PA 16802 USA BaTiO 3 is the most widely used ferroelectric material, and even sixty years after its discovery, it is the most important multilayer ceramic dielectric. The objective of this short paper is to indicate some of the chronologically important scientific contributions enhancing the understanding and use of BaTiO 3. BaTiO 3 was discovered during World War II in 1941 and 1944 in the United States, Russia, and Japan. At least in the U.S.A., the research was accelerated because of the war. At that time, mica was used in most capacitors, but U-boats threatened the supplies of mica to the U.S.A. from South America. The initial reports were based on doping studies of TiO 2 with BaO, which produced ceramic materials with enhanced dielectric permittivities. The mixed oxides were made by Thurnaurer and Deaderick at the American Lava Co. as early as 1941, the filing date of U.S. Patent No. 2,429,588. (1) The high permittivities were found by measurements made at the Erie Resistor Company, with dielectric constant exceeding 1000, ten times greater than any other ceramic known at that time, such as TiO 2 ( εr=110). Later, more precise studies were reported by Wainer and Solomon in the United States, Ogawa and Waku in Japan, and Wul and Goldman in Russia. (2,3,4) It has been speculated that German scientists failed to identify BaTiO 3 because of space charge polarization caused by differences in ore extraction methods for TiO 2.
    [Show full text]
  • Barium Titanate.Pdf (394.6Kb)
    Barium Titanate & Barium Titanate/Aluminum Oxide Ceramics... Barium Titanate and Barium Titanate/Aluminum Oxide Ceramics for Capacitors and Transducers Lewis E. Brigman and Jake Pedretti | Seniors B.S. in Manufacturing Engineering Abstract An inexpensive solid-state powder compaction and sintering method to make barium titanate disc structures for use in capacitors and piezoelectric transducers was researched. Barium titanate powders were uniaxially pressed to 20,000 lbf into discs and sintered over 1,100 to 1,400°C for different times. The discs were characterized for density, capacitance, and output voltage characteristics under uniaxial compression. The output voltage exhibited an exponential relationship with disc thickness. The experimental relative permittivity revealed a trend with percent porosity similar to the theoretical predictions. To strengthen BaTiO3 against cracking during mechanical and electrical loading, BaTiO3/xAl2O3 (x = 0, 5, 10 and 15 percent by weight) composites were prepared by ball-milling, compaction, and sintering (1,250°C and 1,350°C, 1h and 4h). The density and flexural strength of sintered composites decreased and porosity content increased as the amount of Al2O3 increased. Because of high incidence of porosity, the composite samples did not develop their full strengthening potential. Recommendations have been made to further expand this research and achieve higher strength in BaTiO3/xAl2O3 composites. Keywords: powder metallurgy, piezoelectric ceramics, composites, capacitance, flexural strength, densification Introduction Barium titanate (BaTiO3) is a ferroelectric ceramic with piezoelectric properties. It is used in multilayer capacitors in TVs, video cameras and computers. It is also used as a piezoelectric transducer in microphones and in power generation devices. The 51 Journal of Student Research standard method to make barium titanate for use in multilayer capacitors involves tape casting of barium titanate slurry into a thin sheet which is dried and a paste or ink containing silver- palladium powder is screen printed.
    [Show full text]
  • Download This Article in PDF Format
    E3S Web of Conferences 270, 01011 (2021) https://doi.org/10.1051/e3sconf/202127001011 WFCES 2021 SEM imaging and XPS characterization of doped PVDF fibers Tereza Smejkalová1, Ştefan Ţălu2,*, Rashid Dallaev1, Klára Částková1,3, Dinara Sobola1,3,4, and Anton Nazarov5 1Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic 2The Technical University of Cluj-Napoca, Constantin Daicoviciu Street, no. 15, Cluj-Napoca, 400020, Cluj county, Romania 3Central European Institute of Technology BUT, Purkyňova 123, 612 00 Brno, Czech Republic 4Dagestan State University, Makhachkala, St. M. Gadjieva 43-a, Dagestan Republic 367015, Russia 5Ural State University of Economics, Russian Federation Abstract. Polyvinylidene fluoride (PVDF) is one of the most promising electroactive polymers; it exhibits excellent electroactive behaviours, good biocompatibility, excellent chemical resistance, and thermal stability, rendering it an attractive material for biomedical, electronic, environmental and energy harvesting applications. This work aims to further improve its properties by the inclusion of powders of piezoactive materials. Polyvinylidene fluoride was formed by electrospinning into fibres with a thickness of 1.5-0.3 µm and then examined in a scanning electron microscope. The work offers a description of the current procedure in the preparation of samples and their modification for examination in a scanning electron microscope, characterizes the individual components of doped fibres and deals with specific instruments used for various analytical methods. The work contains a theoretical introduction to the analytical methods to which the samples will be further subjected, such as energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS). The obtained excellent properties of doped PVDF could be used in the design of sensors.
    [Show full text]
  • Synthesis of Barium Titanate Powder Using Nano Sized Titania
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 6, June 2014 Synthesis of Barium Titanate Powder Using Nano Sized Titania K.R. Kambale1*, A.R. Kulkarni2 , N. Venkataramani3 1 Department of Metallurgy and Materials Science, College of Engineering, Pune, Wellesley Road, Shivaji Nagar, Pune, India. 2 Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai, India 3 Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai, India ABSTRACT- Barium titanate is a ceramic widely used in electronic industry because of its high dielectric constant and low tangent losses. The main objective of the research work was to synthesize barium titanate from micron sized barium carbonate and titanium oxide having different particle size (0.7 µm, 50-60 nm and 80-90 nm). The calcination temperature of barium titanate was 1150 ºC when micro sized barium carbonate and titanium oxide were used as starting materials. However, calcination temperature decreased to 900 and 950 ºC when micro sized barium carbonate and nano titanium oxide with particle size 50-60 nm and 80-90 nm were used respectively. Formation of phase pure tetragonal barium titanate powder was confirmed using x – ray diffraction (XRD) in each case. The morphology of the powders was studied using scanning electron microscopy (SEM). The particle size of barium titanate reduced from 0.7 µm to 0.5 µm when nano sized titania was used as starting material. KEYWORDS: Barium titanate, particle size, titania, XRD.
    [Show full text]
  • Effect of Strontium on the Structural and Piezoelectric Properties of the Sol Gel Processed Barium Titanate
    Journal(of(Materials(and(( J. Mater. Environ. Sci., 2017, Volume 8, Issue S, Page 4945-4962 Environmental(Sciences( ISSN(:(2028;2508( CODEN(:(JMESCN( http://www.jmaterenvironsci.com ! Copyright(©(2017,((((((((((((((((((((((((((((( University(of(Mohammed(Premier(((((( (OuJda(Morocco( Effect of strontium on the structural and piezoelectric properties of the sol gel processed barium titanate A. El ghandouri1, S. Sayouri1, T. Lamcharfi2, L. Hajji3 1Laboratory of Physics, Theoretical and Applied, FSDM B.P. 179, Fez. Morocco 2Laboratory of signals systems and components, FST Street Immouzar, B.P. 2202 Fez, Morocco 3LMCN, F.S.T.G University Cadi Ayyad Marrakech, Morocco Received 25 Jul 2017, Abstract Revised 17 Oct 2017, Accepted 24 Oct 2017 Structural, dielectric and piezoelectric properties of nanopowders of pure and strontium- Keywords doped BaTiO3 (Ba1-xSrx)TiO3 (x = 0.00; 0.10; 0.20 ;0.30 and 0.40), synthesized by the !!(Ba, Sr)TiO3 ceramics, sol gel process, have been investigated. The samples crystallize in the pure perovskite !!Sol Gel, structure and transform from tetragonal to pseudocubic under doping with Sr. The calculated average crystallite size was about 30 nm. Dielectric parameters (dielectric !!Dielectric properties, !!Complex impedance, permittivity and losses) were determined. Sr doping gives rise to a decrease of the ferro- !!PTCR, to-paraelctric transition temperature and to an enhancement of the Positive Temperature Coefficient of Resistivity (PTCR). Piezoelectric parameters were also determined and !!Piezoelectric properties. their thermal behavior investigated. [email protected] ; Phone: +212673785288; 1. Introduction Barium Titanate (BaTiO3) is a perovskite type material, which is known for its various properties: high dielectric constant, ferroelectric behavior below 130 °C, spontaneous polarization and non-linear optical coefficients.
    [Show full text]