Download Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wave Data Recording Program
Wave data recording program Weipa Region 1978–2004 Coastal Sciences data report No. W2004.5 ISSN 1449–7611 Abstract This report provides summaries of primary analysis of wave data recorded in water depths of approximately 5.2m relative to lowest astronomical tide, 10km west of Evans Landing in Albatross Bay, west of Weipa. Data was recorded using a Datawell Waverider buoy, and covers the periods from 22 December, 1978 to 31 January, 2004. The data was divided into seasonal groupings for analysis. No estimations of wave direction data have been provided. This report has been prepared by the EPA’s Coastal Sciences Unit, Environmental Sciences Division. The EPA acknowledges the following team members who contributed their time and effort to the preparation of this report: John Mohoupt; Vince Cunningham; Gary Hart; Jeff Shortell; Daniel Conwell; Colin Newport; Darren Hanis; Martin Hansen; Jim Waldron and Emily Christoffels. Wave data recording program Weipa Region 1978–2004 Disclaimer While reasonable care and attention have been exercised in the collection, processing and compilation of the wave data included in this report, the Coastal Sciences Unit does not guarantee the accuracy and reliability of this information in any way. The Environmental Protection Agency accepts no responsibility for the use of this information in any way. Environmental Protection Agency PO Box 15155 CITY EAST QLD 4002. Copyright Copyright © Queensland Government 2004. Copyright protects this publication. Apart from any fair dealing for the purpose of study, research, criticism or review as permitted under the Copyright Act, no part of this report can be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without having prior written permission. -
Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 by Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane
ARCHIVE: Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 By Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane The date of the cyclone refers to the day of landfall or the day of the major impact if it is not a cyclone making landfall from the Coral Sea. The first number after the date is the Southern Oscillation Index (SOI) for that month followed by the three month running mean of the SOI centred on that month. This is followed by information on the equatorial eastern Pacific sea surface temperatures where: W means a warm episode i.e. sea surface temperature (SST) was above normal; C means a cool episode and Av means average SST Date Impact January 1858 From the Sydney Morning Herald 26/2/1866: an article featuring a cruise inside the Barrier Reef describes an expedition’s stay at Green Island near Cairns. “The wind throughout our stay was principally from the south-east, but in January we had two or three hard blows from the N to NW with rain; one gale uprooted some of the trees and wrung the heads off others. The sea also rose one night very high, nearly covering the island, leaving but a small spot of about twenty feet square free of water.” Middle to late Feb A tropical cyclone (TC) brought damaging winds and seas to region between Rockhampton and 1863 Hervey Bay. Houses unroofed in several centres with many trees blown down. Ketch driven onto rocks near Rockhampton. Severe erosion along shores of Hervey Bay with 10 metres lost to sea along a 32 km stretch of the coast. -
NASA Sees Ex-Tropical Cyclone Gillian's Remnants Persist 20 March 2014
NASA sees ex-Tropical Cyclone Gillian's remnants persist 20 March 2014 (PR) instrument revealed that intense convective storms in this area were still dropping rain at a rate of over 97 mm/3.8 inches per hour and returning radar reflectivity values of over 51dBZ. TRMM PR data were used to create a simulated 3-D view that showed the vertical structure of precipitation within the stormy area contained towering thunderstorms. The Joint Typhoon Warning Center noted that animated enhanced satellite imagery on March 20 showed flaring deep convection associated with a slowly-consolidating low-level circulation center. On March 20, the Tropical Cyclone Warning Centre in Jakarta noted that Gillian's remnants had maximum sustained winds near 25 knots/28.7 mph/46.3 kph. It was centered near 9.4 south and 119.0 east, about 233 nautical miles/ 268.1 miles/431.5 km east of South Kuta, Bali, Indonesia. TRMM passed above Gillian's remnants on March 20, TCWC issued watches and warnings for parts of 2014, and this 3-D simulation of TRMM data showed the Indonesia archipelago in Bahasa. several of the tallest thunderstorms in Gillian's remnants were reaching heights of over 15.75 km/9.8 miles. Credit: NASA/SSAI, Hal Pierce NASA's TRMM satellite continues to follow the remnants of former Tropical Cyclone Gillian as it moved from the Southern Pacific Ocean into the Southern Indian Ocean where it appears to be re- organizing. The persistent remnants of tropical cyclone Gillian have moved westward over 2,700 km/1,674 miles since forming in the Gulf of Carpentaria on March 8, 2014. -
Wave Data Recording Program Dunk Island 1998-2002
Wave data recording program Dunk Island 1998–2002 Coastal Services data report No. W2004.2 ISSN 1449–7611 Abstract This report provides summaries of primary analysis of wave data recorded in water depths of approximately 20m relative to lowest astronomical tide, 12.7km north of Dunk Island and 8km northeast of Clump Point in north Queensland. Data was recorded using a Datawell Waverider buoy, and covers the periods from 18 December 1998 to 12 November 2002. The data was divided into seasonal groupings for analysis. No estimations of wave direction data have been provided. This report has been prepared by the EPA’s Coastal Services Unit, Environmental Sciences Division. The EPA acknowledges the following team members who contributed their time and effort to the preparation of this report: John Mohoupt; Vince Cunningham; Gary Hart; Jeff Shortell; Daniel Conwell; Colin Newport; Darren Hanis; Martin Hansen and Jim Waldron. Wave data recording program Dunk Island 1998–2002 Disclaimer While reasonable care and attention have been exercised in the collection, processing and compilation of the wave data included in this report, the Coastal Services Unit does not guarantee the accuracy and reliability of this information in any way. The Environmental Protection Agency accepts no responsibility for the use of this information in any way. Environmental Protection Agency PO Box 155 BRISBANE ALBERT ST QLD 4002. Copyright Copyright Queensland Government 2004. Copyright protects this publication. Apart from any fair dealing for the purpose of study, research, criticism or review as permitted under the Copyright Act, no part of this report can be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without having prior written permission. -
Smoke Haze Trigger Factors in the Malaysia Indonesian Border
Utopía y Praxis Latinoamericana ISSN: 1315-5216 ISSN: 2477-9555 [email protected] Universidad del Zulia Venezuela Smoke Haze Trigger Factors in the Malaysia Indonesian Border MUADI, SHOLIH Smoke Haze Trigger Factors in the Malaysia Indonesian Border Utopía y Praxis Latinoamericana, vol. 26, no. Esp.1, 2021 Universidad del Zulia, Venezuela Available in: https://www.redalyc.org/articulo.oa?id=27966119036 DOI: https://doi.org/10.5281/zenodo.4556305 This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative SHOLIH MUADI. Smoke Haze Trigger Factors in the Malaysia Indonesian Border Artículos Smoke Haze Trigger Factors in the Malaysia Indonesian Border Factores desencadenantes de la neblina de humo en la frontera de Malasia e Indonesia SHOLIH MUADI DOI: https://doi.org/10.5281/zenodo.4556305 Brawijaya University, Indonesia Redalyc: https://www.redalyc.org/articulo.oa? [email protected] id=27966119036 https://orcid.org/0000-0002-9263-5526 Received: 12 December 2020 Accepted: 15 February 2021 Abstract: e purpose of this study was to analyze the haze incidence and trigger factors at the border between Indonesia and Malaysia. e results of the study reveal that the Biggest Factor Triggering the Haze Disaster is that forest and land fires are mostly caused by human behavior, whether intentional or as a result of negligence. Only a small part is caused by nature (lightning or volcanic lava). In the event of forest fires and natural disasters, 99% of incidents in Indonesia are caused by human factors, either intentionally or negligently. -