ABSTRACT GRUVER, JOEL BROOKS. Impact Of

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT GRUVER, JOEL BROOKS. Impact Of ABSTRACT GRUVER, JOEL BROOKS. Impact of Management and Texture on Soil Organic Matter Fractions. (Under the direction of Michael G. Wagger.) Growing concerns about elevated levels of atmospheric CO2 and associated climate change have increased interest in C sequestration. While general increases in conservation management (e.g., conservation tillage, inclusion of cover crops and forages in rotations, land application of organic wastes) may enhance C sequestration, efficient utilization of soil as a C sink will require identification of soil systems with high potential for sequestration and improved methods of monitoring soil C. The objectives of this research were to: 1) investigate the historical roots, theoretical and experimental validation and subsequent impact of the C saturation relationships proposed by Jan Hassink, 2) investigate the effects of management and texture on soil structure and C fractions using soil from two long term experiments, 3) develop new methods of soil structural disruption and physical fractionation that address shortcomings in existing methods, 4) investigate the impact of antecedent C on aggregate and C dynamics following structural disruption and amendment and 5) evaluate the simplified MnoxC method proposed by Weil et al. (2003). Collectively, the literature we reviewed did not support broad application of simple C saturation relationships such as those proposed by Hassink; however, the abundance of strong relationships between soil C and fine mineral content reported in the literature suggests that soil texture is a useful indicator of soil capacity for C accumulation when other capacity factors (e.g. temperature, mineralogy) are relatively constant. Results from two incubation experiments demonstrated the modulating effect of antecedent C on soil C and aggregate dynamics following structural disruption and residue addition. Positive effects of residue and structural disruption on aggregation were greatest in soil with low antecedent C. Residue decomposed more rapidly in soil with high antecedent C but had a greater priming effect in soil with low antecedent C. Addition of a 15N labeled nitrate source revealed that immobilization of nitrate-N within microaggregates is a minor process irrespective of structural disruption and antecedent C. Carbon contained in the micromacro fine fraction (least dispersible < 20 µm fraction of stable macroaggregates isolated using a new fractionation method) of soils from an Organic Transition (OT) experiment (Center for Environmental Farming Systems in Goldsboro, NC) was sensitive to C input regime but unrelated to fine mineral content (unlike 3 other fine fractions). Strong tillage system effects on C fractions, aggregation and texture (tillage intensity↑ = ↓C, aggregate stability and sand content) were identified in soil from the Nine Tillage Systems (NTS) experiment (Upper Piedmont Research station in Reidsville, NC). These results were integrated with historical soil measurements and crop yields into a comprehensive review of the NTS experiment. Permanganate oxidizable C (Weil et al. (2003) method) results for soil from the OT and NTS experiments indicate that MnoxC is a sensitive measure of management effects on soil C. We also found however that the volume (20 ml) and concentration (20 mM) of permanganate recommended by Weil et al. do not combine to provide a sufficient excess of permanganate to maintain linearity over the range of C levels commonly found in agricultural soils. We developed a correction method that provides reasonable correction for soils within a 3x range of MnoxC levels and improves the sensitivity of MnoxC to changes in soil C resulting from differences in tillage and organic matter additions. Impact of Management and Texture on Soil Organic Matter Fractions by Joel Brooks Gruver A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Soil Science Raleigh, North Carolina 2007 APPROVED BY ______________________________ ______________________________ Dean Hesterberg Wei Shi ______________________________ _______________________________ Shuijin Hu Michael Wagger Chair of Advisory Committee BIOGRAPHY My interest in plants and soil emerged early, nutured by many hours of childhood explorations in Wyman Park (Baltimore, MD) and the farms where my family kept honeybees. After 7 years of mostly weekend visits to Gruverland, my family built a house… and I became a country boy! Undergraduate study at Principia College (Elsah, IL) strengthened my scientific interests and opened my eyes to the diverse cultures of the world. After a year in transition, during which I worked on a local organic farm and read sustainable agriculture literature voraciously, I finally flew the coop and landed a 1 year farm management internship at the Hampshire College Farm (Amherst, MA). This highly formative experience convinced me that I should pursue a career in the agricultural sciences. After a short stint at Oregon State University (Corvallis, OR), I transfered to the University of Maryland (College Park, MD). Four years of collaboration with Ray Weil fine-tuned my teaching skills and led to visiting faculty positions at Tufts University and (Sommerville, MA) and Principia College. Next I headed south to North Carolina where I became the first manager of the Student Farm at the Center for Environmental Farming Systems (Goldsboro, NC). After two very fulfilling seasons, I relocated to Raleigh and embarked on a PhD program in the NCSU Soil Science Department. Five years later, despite many distractions (5 classes taught at Central Carolina Community College (Pittsboro, NC), ~ 40 conference presentations and a wedding), I am now an assistant professor in the Agriculture Department at Western Illinois University (Macomb, IL) and my dissertation is complete ! ii ACKNOWLEDGEMENTS I am very grateful for all the support I have received from: my family - Mom, Dad, Nate and Feather, my friends at NCSU - Ken F, Robert W, Scottie D, Steve C, Kannan I, Suba M, Sarah O, Laura O, Samba A, Chris B, Dr. Kamprath and many more, my committee members, and my wife, Lisa ! iii TABLE OF CONTENTS LIST OF FIGURES ................................................................................................... viii LIST OF TABLES ...................................................................................................... xii CHAPTER I: THE HASSINK HYPOTHESES: A 10 YEAR RETROSPECTIVE.. 1 Abstract ..................................................................................................................... 1 Introduction .............................................................................................................. 2 Historical context ...................................................................................................... 2 Structure of review.................................................................................................... 5 Discussion of component 1: Particulate C content is controlled primarily by management, while fine C content is controlled primarily by fine mineral content... 6 Textural regulation of POM-C ................................................................................ 7 Interactions between management and texture ........................................................ 7 Management effects on fine C.................................................................................. 8 Accumulation of fine C............................................................................................ 8 Depletion of fine C .................................................................................................. 9 Textural regulation of fine C ................................................................................. 10 Relationships between fine mineral content and soil C .......................................... 11 Variation in fine C with depth ............................................................................... 11 Relationship between fine C loading and fine mineral content............................... 12 C enrichment vs. C loading ................................................................................... 13 Artifacts of fractionation ....................................................................................... 14 Functional significance of fine C loading .............................................................. 14 Distribution of fine materials within soil matrices ................................................. 16 Summary of component 1:..................................................................................... 16 Discussion of component 2: The amount of C that can be protected by OMI is finite and related to fine mineral content. ................................................................ 17 Do soils have a finite matric protection capacity (MPC) ?..................................... 18 Evidence of fine C saturation ................................................................................ 19 Evidence supporting finite MPC in meta-data ....................................................... 19 Regression approaches.......................................................................................... 20 Are the mechanisms underlying MPC finite?......................................................... 22 Sorptive preservation ...........................................................................................
Recommended publications
  • Cultivation of Soils for Forestry
    Forestry Commission ARCHIVE Forestry Commission Bulletin 119 Cultivation of Soils for Forestry FORESTRY COMMISSION BULLETIN 119 Cultivation of Soils for Forestry D.B. Paterson and W. L. Mason Forest Research, Silviculture North Branch, Northern Research Station, Roslin, Midlothian EH25 9SY Forestry Commission, Edinburgh © Crown copyright 1999 Applications for reproduction should he made to HMSO, The Copyright Unit St Clements House, 2-16 Colegate, Norwich NR3 1BQ ISBN 0 85538 400 X Paterson, David B. and Mason, William L., 1999. Cultivation of Soils for Forestry. Bulletin 119. FDC 237:114:(410) KEYWORDS: Forestry, Cultivation, Soils Acknowledgements Special thanks are due to Chris Quine, Silviculturist at Northern Research Station, who made available his unpublished Cultivation Review and many background papers and references. We thank the project leaders, research foresters and workers, past and present in Silviculture (North), and the former Site Studies and Physiology Branches who initiated and managed the experiments reported here and gave permission for their results to be used. The statistical services of I.M.S. White are gratefully acknowledged. The reports of Technical Development Branch (formerly Work Study) on trials of cultivation machinery have been heavily used. Many authors outside the Forestry Commission have provided valuable information - with particular thanks to R. Schaible, M. Carey and E. Hendrick in Ireland and D.C. Malcolm of Edinburgh University. Numerous helpful comments have been made by Graham Pyatt, Richard Toleman, John Morgan, Duncan Ray, David Henderson- Howat and Brian Spencer. Karen Chambers edited and substantially improved the structure and presentation of an early draft. Finally, we are grateful to Madge Holmes for typing various drafts, Glenn Brearley for illustrations and John Parker for editorial and publishing services.
    [Show full text]
  • Soils and Their Main Characteristics
    Higher Geography Physical Environments Biosphere Soils Higher Geography course The 3 types of soil studied as part of the Higher Geography course are: • Brown Earths •Podzols •Gleys Characteristics of Brown Earths • Free draining • Brown/reddish brown • Deciduous woodland • Litter rich in nutrients • Intense biological activity e.g. earthworms • Mull humus Brown Earth Profile • Ah-topsoil dark coloured enriched with mull humus, variable depth • B - subsoil with distinctive brown/red brown colours • Lightening in colour as organic matter/iron content decreases with depth Brown Earth: Soil forming factors • Parent material • Variable soil texture •Climate • Relatively warm, dry • Vegetation/organisms • Broadleaf woodland, mull humus, indistinct horizons • Rapid decomposition • Often earthworms and other mixers • Topography • Generally low lying •Time • Since end of last ice age c10,000 years Organisms in Brown Earths False colour SEM of mixture of soil fungi and bacteria Help create a good and well aggregated, aerated and fertile crumb structured soil Thin section of soil showing enchytraeid faecal material Earthworm activity is important in soil mixing Uses of Brown Earths • Amongst the most fertile soils in Scotland • Used extensively for agriculture e.g. winter vegetables • Fertilisers required to maintain nutrient levels under agriculture • Occurring on gently undulating terrain - used extensively for settlement and industry • Sheltered sites suit growth of trees Test yourself: Brown Earths Write down 3 characteristics of a brown earth
    [Show full text]
  • Review of the Evidence Base for the Status and Change of Soil Carbon Below 15 Cm from the Soil Surface in England and Wales
    Department for Environment, Food and Rural Affairs Research project final report Project title Review of the evidence base for the status and change of soil carbon below 15 cm from the soil surface in England and Wales Sub-Project iii of Defra Project SP1106: Soil carbon: studies to explore greenhouse gas emissions and mitigation Defra project code SP1106 Contractor SKM Enviros Organisations Rothamsted Research / North Wyke Cranfield University British Geological Survey Report authors Andy Gregory ([email protected]), Andy Whitmore, Guy Kirk, Barry Rawlins, Karl Ritz, Phil Wallace. Project start date October 2010 Sub-project end date March 2011 Sub-project iii: Review of the evidence base for the status and change of soil carbon below 15 cm from the soil surface in England and Wales Executive summary The world‟s soils contain more carbon (C), predominantly in organic matter (OM), than the atmosphere and terrestrial plants combined. Our knowledge of soil C is largely restricted to the topsoil, but more than half of soil C is stored at depths lower than 15 cm in the subsoil. Subsoil C represents a little-understood component of the global C cycle, with potential implications with respect to predicted changes in climate; it is important that the level of understanding of subsoil C in England and Wales is clarified and that potential knowledge gaps are identified. The overall aim of this review was to evaluate the current status and dynamics of subsoil C in England and Wales by reviewing the best-available evidence and by sensible extrapolation. Further objectives sought to review the source and stability of subsoil C in general, to identify the key gaps in knowledge, and to seek evidence on how subsoil C may respond to imposed (soil management) or natural (climate change) changes in contributing factors in the future.
    [Show full text]
  • Soil Variation
    Soil Variation Have a look at some of the most common soils in Scotland’s crofting counties, as well as a couple that are only found in certain parts of the country, and how those soils are used and managed by crofters. Crofting areas in Scotland have cool and generally wet climates, which helps peat soils to develop. Ancient woodlands helped brown earth soil to form, leaching under wet and acid conditions allows podzols to form and although the woods are often gone now, the soil remains as podzols. When a soil becomes water saturated a gley soil can develop. In coastal areas crofts sometimes have soils which have developed on beach sand called Machair. The parent material influences the soil type and in a few areas the serpentinite rocks develop a rare soil called serpentine soil. 1 Peat Hi I’m Pete 2 Brown Earth Hi I’m Rusty Peat forms in very wet conditions where plant leaves, shoots As you might guess from their name brown earths are a deep and roots die and are very slowly decomposed over time. On rich brown colour, but more importantly tend to be much more average peat accumulates at about 1mm per year, is wet and fertile. They are more common on the east coast and in drier, very acid, so only those plants which are specially adapted to warmer environments. those conditions can grow. Brown earths form on rich parent material, which contains While it is not much use for farming, it is still sometimes a good balance of elements such as calcium and aluminium used as fuel (after it is dried out) and can be used to which produce pH neutral or alkaline soil.
    [Show full text]
  • General Soil Map of Ireland, 1969 Survey of Some Midland Sub-Peat Mineral Soils (With Bord Na Móna), 1971 — M
    SOIL SURVEY PUBLICATIONS 1962-1979 County Surveys Soils of Co. Wexford, 1964* — M. J. Gardiner and P. Ryan Soils of Co. Limerick, 1966 — T. F. Finch and P. Ryan Soils of Co. Carlow, 1967 — M. J. Conry and P. Ryan Soils of Co. Kildare, 1970 — M. J. Conry, R. F. Hammond and T. O’Shea Soils of Co. Clare, 1971 — T. F. Finch, E. Culleton and S. Diamond Soils of Co. Westmeath, 1977 — T. F. Finch and M. J. Gardiner Soils of West Cork, (part of Resource Survey) 1963 — M. J. Conry, P. Ryan and J. Lee Soils of West Donegal, (part of Resource Survey) 1969 — M. Walsh, M. Ryan and S van de Schaaf Soils of Co. Leitrim, (part of Resource Survey) 1973 — M. Walsh An Foras Talúntais Farms Grange, Co. Meath, 1962 — M. J. Gardiner Kinsealy, Co. Dublin, 1963 — M. J. Gardiner Creagh, Co. Mayo, 1963 — M. J. Gardiner Herbertstown, Co. Limerick, 1964 — T. F. Finch Drumboylan, Co. Roscommon, 1968 — G. Jaritz and J. Lee Ballintubber, Co. Roscommon, 1969 — M. Ryan and J. Lee Ballinamore, Co. Leitrim, 1969 — T. F. Finch and J. Lee Clonroche, Co. Wexford, 1970 — T. F. Finch and M. J. Gardiner Mullinahone, Co. Tipperary, 1970 — M. J. Conry Ballygagin, Co. Waterford, 1972 — T. F. Finch and M. J. Gardiner Department of Agriculture Farms Clonakilty, Co. Cork, 1964* — J. Lee and M. J. Conry Ballyhaise, Co. Cavan, 1965* — M. Ryan and J. Lee Athenry, Co. Galway, 1965* — S. Diamond, M. Ryan and M. J. Gardiner Other Farms Kells Ingram, Co. Louth, 1964* — M. J. Gardiner Multyfarnham Agricultural College, Co.
    [Show full text]
  • Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China
    water Article Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China Yongwu Wang 1, Tieniu Wu 1,2,* , Jianwu Huang 1, Pei Tian 1,* , Hailin Zhang 1 and Tiantian Yang 3 1 Key Laboratory for Geographical Process Analysis & Simulation, Central China Normal University, Wuhan 430079, China; [email protected] (Y.W.); [email protected] (J.H.); [email protected] (H.Z.) 2 Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA 3 School of Civil Engineering and Environmental Science, The University of Oklahoma, Norman, OK 73019, USA; [email protected] * Correspondence: [email protected] (T.W.); [email protected] (P.T.) Received: 16 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Soil hydraulic properties are ecologically important in arranging vegetation types at various spatial and temporal scales. However, there is still a lack of detailed understanding of the basic parameters of plinthosol in the Middle Yangtze River basin. This paper focuses on the soil hydraulic properties of three plinthosol profiles at Yueyang (YE), Wuhan (WH), and Jiujiang (JU) and tries to reveal the origin of plinthosol and the relationship among the soil hydraulic parameters. Discriminant analysis indicated that the plinthosol in the JU profile was of aeolian origin, while that in the WH and YE profiles was of alluvial origin; soil hydraulic properties varied greatly among these profiles. The proportion of macro-aggregates (>0.25 mm, weight%) in the JU profile (88.28%) was significantly higher than that in the WH (73.63%) and YE (57.77%) profiles; the water holding capacity and saturated hydraulic conductivity of JU plinthosol was also higher than that of WH and YE plinthosol; the fact that Dr and Di of the JU profile are lower than those of the YE and WH profiles illustrates the stability of JU plinthosol is better than that of YE and WH plinthosol, which is consistent with the fractal dimension of aggregates.
    [Show full text]
  • Soils of Ceylon
    SOILS OF CEYLON - ANEW APPROACH TO THE IDÊNTIfICATION AND aASSIFICATlON OF THf MOST IMPORTANT SOIL'GROUPS OF CEYLON By F. R. MOORMAKN and C R. PANÄBOKKt Land use Division Hfeiation of tt>6' Department of Agriculture NATIONS CEYLON •s 1961 PRINTED AT TH8 «OVRRNlf ENT PRESS, CBÏLON, ON PAPER MANUPACTÜBBD AT THB BA9TBRN PÄPRR MItXS CORPORATION, VALAICHOHBNAI. CBÏLON, - SOILS OF CEYLON A NEW APPROACH TO THE IDENTIFICATION AND CLASSIFICATION OF THE MOST IMPORTANT SOIL GROUPS OF CEYLON By Dr. F. R. MOORMANN F.A.O. Soil Classification Consultant and Dr. C. R. PANABOKKE Head, Land Use Division, Department of Agriculture, Ceylon Scanned from original by ISRIC - World Soil Information, as ICSI) j World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued j information available for consultation, following Fair Use J Guidelines. Every effort is taken to respect Copyright of the ] materials within the archives where the identification of the i Copyright holder is clear and, where feasible, to contact the { originators. For questions please contact [email protected] indicating the item reference number concerned. j 2 It 2251—150 (4/82) SISH CONTENTS Pag& Foreword 4 CHAPTER I Introduction CHAPTER II Great Soil Groups of Ceylon 7 1. Reddish Brown Earths & 2. Noncalcic Brown Soils 11 3. Reddish Brown Lateritie 8oils ia 4. Red-Yellow Podzolic Soils . 16 5. Red-Yellow Latosols 21 6. Immature Brown Loams 24: 7. Rendzina Soils 2ft 8. Grumusols .. .27 9. Solodized Solonetz 29> '10. Low-Humic Gley Soils 31 11. Meadow Podzolic Soils 32" 12.
    [Show full text]
  • Wildlife Gardening Forum Soil Biodiversity in the Garden 24 June 2015 Conference Proceedings: June 2015 Acknowledgements
    Conference Proceedings: June 2015 Wildlife Gardening Forum Soil Biodiversity in the Garden 24 June 2015 Conference Proceedings: June 2015 Acknowledgements • These proceedings published by the Wildlife Gardening Forum. • Please note that these proceedings are not a peer-reviewed publication. The research presented herein is a compilation of the presentations given at the Conference on 24 June 2015, edited by the WLGF. • The Forum understands that the slides and their contents are available for publication in this form. If any images or information have been published in error, please contact the Forum and we will remove them. Conference Proceedings: June 2015 Programme Hyperlinks take you to the relevant sections • ‘Working with soil diversity: challenges and opportunities’ Dr Joanna Clark, British Society of Soil Science, & Director, Soil Research Centre, University of Reading. • ‘Journey to the Centre of the Earth, the First few Inches’ Dr. Matthew Shepherd, Senior Specialist – Soil Biodiversity, Natural England • ‘Mycorrhizal fungi and plants’ Dr. Martin I. Bidartondo, Imperial College/Royal Botanic Gardens Kew • ‘How soil biology helps food production and reduces reliance on artificial inputs’ Caroline Coursie, Conservation Adviser. Tewkesbury Town Council • ‘Earthworms – what we know and what they do for you’ Emma Sherlock, Natural History Museum • ‘Springtails in the garden’ Dr. Peter Shaw, Roehampton University • ‘Soil nesting bees’ Dr. Michael Archer. President Bees, Wasps & Ants Recording Society • Meet the scientists in the Museum’s Wildlife Garden – Pond life: Adrian Rundle, Learning Curator. – Earthworms: Emma Sherlock, Senior Curator of Free-living worms and Porifera. – Terrestrial insects: Duncan Sivell, Curator of Diptera and Wildlife Garden Scientific Advisory Group. – Orchid Observers: Kath Castillo, Botanist.
    [Show full text]
  • Adsorption and Leaching of Fluoride in Soils of China
    122 Fluoride Vol. 35 No. 2 122-129 2002 Research report ADSORPTION AND LEACHING OF FLUORIDE IN SOILS OF CHINA Wuyi Wang,a Ribang Li, Jian’an Tan, Kunli Luo, Lisheng Yang, Hairong Li, Yonghua Li Beijing, China SUMMARY: Adsorption and leaching of fluoride in typical Chinese soils in relation to physical and chemical parameters of the soils were studied. F-adsorbing capacity of soil can be ranked as Black soil > Purplish soil > Red earth > Dark brown earth > Drab soil > Sierozen. Leaching rate from different soils was Drab soil > Sierozen > Black soil > Purplish soil > Red earth > Dark brown earth. The adsorption of F in soils decreased from humid areas to arid areas and from acidic soils to alkaline soils. The smaller loss of F leaching occurred from acid soil in tropical humid areas and in temperate semi-humid areas compared with arid areas. This would result in enrichment of fluoride in shallow groundwater in northern China. Keywords: Chinese soils, Fluoride adsorption, Fluoride leaching, Fluorosis, Groundwa- ter fluoride, Soil types. INTRODUCTION Endemic fluorosis caused by fluoride in the environment is a global geo- chemical disease.1-3 In China, it occurs in more than 30 provinces, munici- palities, and autonomous regions affecting a population of 45 million.4 En- demic fluorosis areas in China can be divided into six types according to the fluoride source: (1) shallow groundwater with high fluoride (> 1.0 mg/L, state criteria of drinking water5); (2) deep groundwater with high fluoride; (3) hot springs with high fluoride; (4) abundant fluoride rock formations; (5) high-fluoride coal; (6) high-fluoride tea.6 Shallow high-fluoride groundwater exists mainly in the vast arid and semi-arid regions of northern China.6 In these areas, enrichment of fluoride in groundwater occurs from fluoride in rock formations as replenishment sources with relatively poor drainage and high evaporation.
    [Show full text]
  • Challenges and Future Strategies For
    This paper was peer-reviewed for scientific content. Pages 619-627 In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory. Assessment of Soil Quality for Biodiversity Conservation in Boreal Forest Ecosystems Galina N. Koptsik*,, Serguei V. Koptsik, and Svetlana Yu. Livantsova ABSTRACT We studied one source of biodiversity, which is typically Soil conservation has fundamental significance for overlooked, variation in soil types. The effect of variations biodiversity conservation and sustainable land use. in soil characteristic on vegetation structure, composition Variations in soil types within the National Natural Park and diversity were examined within the National Park “Russian North”, European Russia, were analyzed to “Russian North”, European Russia. secure habitat diversity. Forest soils differed greatly in METHODS AND MATERIALS O and A layer thickness, organic C content, total elements, acidity, and exchangeable cations. Improving Study area and soils of soil properties in a range: podzol, podzolic soil, derno- The National Park “Russian North” is situated in the podzolic soil, brown earth, pararendzina lead to growing northern part of European Russia, about 200 km north from diversity and changes in floristical composition of Vologda (between 59°43′ and 60°18′N; between 38°09′ and phytocoenoses, followed by changing pine and spruce 39°00′E). The territory is characterized by a hummocky forests to mixed and birch forests. The ordination of the moraine relief and covered mainly by loamy carbonate and major species diversity variables was highly related to noncarbonate moraine; glaciofluvial deposits are less soil pH and thickness of A horizon, suggesting that pH common.
    [Show full text]
  • 500 Block Excavation Summaries
    Alexandria Archaeology 500 Block King Street AX1 Courthouse Site Excavation Summaries Feature 5 (C) 518-520 King Street Lot 4 Feature 6 (D) 522-524 King Street Lot 3 Feature 7 (B) 104 South St. Asaph Street Lot 26 Feature 14 522-524 King Street Lot 3 Feature 17 (X) 121 Pitt Street Lot 12 Feature DD 108-110 South St. Asaph Street Lot 24 Feature LL 108-110 South St. Asaph Street Lot 24 Feature PP 108-110 South St. Asaph Street Lot 24 Feature QQ 106 South St. Asaph Street Lot 25 Feature SS 108-110 South St. Asaph Street Lot 24 Feature VV 112-114 South St. Asaph Street Lot 23 Feature AAA 508-512 King Street Lot 6 44AX1 Courthouse Site Excavation Summary Alexandria Archaeology FEATURE 5 (C) Overview: Location: 518-520 King Street NW Quadrant, Lot 4 Date: Late 18th to early 20th centuries Function: Ice well/Cooler Form/Construction: This feature was a circular stretcher bond brick lined shaft with a brick wall running through its center. There was no interior lining. Short Summary: Preliminary analyses indicated that all artifacts in this feature dated to around 1800. The feature had the unique peculiarity of being intersected by a wall from top to bottom and it is possible that it was used as a receptacle for cooling goods. Until Level 3 was reached, the soil matrices on either side of the well were quite different from each other. After this level however, the soil was predominantly dark brown, sandy, and organic, with an increasing amount of sand as the feature reached bottom.
    [Show full text]
  • Influence of the Nature of Clay Minerals on the Fixation of Radiocaesium
    R European Journal of Soil Science, March 1999, 50, 117±125 In¯uence of the nature of clay minerals on the ®xation of radiocaesium traces in an acid brown earth±podzol weathering sequence E. MAESa,A.ISERENTANTa, J. HERBAUTSb & B. DELVAUXa aUniversite Catholique de Louvain (UCL), unite Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-La-Neuve, Belgium, and bUniversite Libre de Bruxelles (ULB), Laboratoire de GeÂneÂtique et d'Ecologie veÂgeÂtales, ChausseÂe de Wavre 1850, 1160 Bruxelles, Belgium Summary The magnitude of radiocaesium ®xation by micaceous clay minerals is affected by their transformation, which depends on weathering in soil. The net retention of radiocaesium traces was quanti®ed by sorption±desorption experiments in the various horizons of four sandy soils forming an acid brown earth± podzol weathering sequence derived from sandy sediments and characterized by marked changes in mineral composition. The features of the 2:1 minerals of the four soils, resulting from an aluminization process in depth and a desaluminization process towards the surface, had a strong in¯uence on Cs+ ®xation. Beneath the desaluminization front, which deepens from the acid brown earth to the podzol, hydroxy interlayered vermiculite was dominant and the 137Cs+ ®xation was the weakest. At the desaluminization front depth, vermiculite was responsible for the strongest 137Cs+ ®xation. In the upper layers, smectite appeared in the podzolized soils and the 137Cs+ ®xation decreased. The magnitude in Cs+ ®xation therefore appeared as a tracer of the transformation process affecting the 2:1 clay minerals in the acid brown earth±podzol weathering sequence. This magnitude was positively correlated with the vermiculite content of the studied soil materials estimated by the rubidium saturation method.
    [Show full text]