The Lattice World, Quantum Foam and the Universe-Wide Metamaterial
Total Page:16
File Type:pdf, Size:1020Kb
The Lattice World, Quantum Foam and the Universe-Wide Metamaterial David Thomas Crouse1 1The City University of New York, USA [email protected] [email protected] Abstract| The concept of a universe-wide gravity crystal that combines Heisenberg´sLattice World and Wheeler´sQuantum Foam is described. It is assumed that space is a crystal with a lattice constant equal to the Planck length and a basis of a Planck mass. Inertial anomalies are calculated that include a parameter that connects the external gravitational field and gravita- tional flux. Similar to the electric permittivity and magnetic permeability of metamaterials, this parameter can take on positive, zero and negative values. In order to provide a solution to the self-energy of the electron, Werner Heisenberg in 1930 3 introduced the concept of space being discretized in cells of volume ro, with ro = ~=cMproton [1]. In correspondence with Niels Bohr, Heisenberg also states that he believes that the discreteness of space underlies the quantum mechanical uncertainty relations [2]. However, he rather quickly sets aside this concept because of its obvious and inherent problems - one being the breaking of continuous rotational and translational symmetries of space. Another problem pointed out by Bohr was that an absolute \minimum" possible length in one frame of reference is length-contracted to a smaller value in a different frame of reference, leading to a contradiction. However the concept did not disappear - being further discussed by Hiesenberg, Wolfgang Pauli, Gleb Wataghin, and recently by a whole host of physicist in the field of quantum gravity [3]. From Heisenberg in the 1930's, one jumps ahead in time to 1957, when John Wheeler introduced the concept of quantum foam as part of a theory emerging at this time called quantum geometro- dynamics (QG), or quantum gravity as it is more widely known by today [4]. His objective for the paper was to introduce the theory of QG and show that all of classical physics is purely geometrical and based throughout on the most firmly established principles of electromagnetism and general relativity [4]. Using concepts within the field of quantum electrodynamics, Wheeler argued that for a possible history to contribute to the transition probability, the phase of the exponent, which is dependent on the metric g, should be small (∼ 1 rad) to avoid destructive interference [4]. This limits fluctuations in g (i.e., ∆g) that can occur over a volume of space L3 to be on the order of −35 ∆g ∼ Lp=L, where Lp is the Planck length (Lp = 1:61x10 m). The fluctuations in the metric ∆g remains small relative to g until L approaches Lp, at which point, ∆g ∼ g and \the character of the space undergoes an essential change... and multiple connectedness develops" [4] that re- sults in an array of \wormholes" in the topology of space with a lattice constant of approximately Lp; he calls this wormhole array a "quantum foam". These wormholes have an electric charge of qfluct = 12e that produces an intense electromagnetic field energy E that has associated with it a −2 q hc −5 mass of mp = c E = G = 2:17 × 10 g. In this paper, the spatial order of Heisenberg's lattice world is imposed upon the quantum foam such that it forms a gravity crystal (GC) throughout all of space. It is assumed that the \local compensation" of electromagnetic energy and gravitational energy discussed by Wheeler either does not occur or is incomplete. It is also assumed that the particles either are stable, and do not come into and out of existence as Wheeler describes, or that they are present over most of a time period −44 given by the Planck time tp = 5:39x10 s and only fleeting into and out of existence every tp step in time so as to satisfy Heisenberg's Uncertainty Principle. With these assumptions, the emperical pseudopotential method (EPM) [5] and tight binding method (TBM)[6] are used to calculate the dispersion curves of non-relativistic and relativistic particles within the GC, as well as the particles' effective mass as a function of momentum and gravitational mass. It is shown that particles in this crystal can appear to violate Einstein's Equivalence Principle equating inertial and gravitational masses, but only because the the system includes not only the particle, but the crystal as well. The inertial mass (mi) can diverge from the gravitational mass (mg) as the particle's momentum 4 b3 ) 9 R 2 3 0 X 1 Γ x b2 Real Space V 2 b M e 1 ( y g r e n 1 E 0 R Γ X M Γ 1 0.5 0 0.5 1 1.5 8 Lp ) 8 - 0 4 1 L p x g k L ( p 0 s s a M -4 -8 R Γ X M Γ 1 0.5 0 0.5 1 1.5 π Crystal Momentum (in units of /LP) Figure 1: Left: The gravity crystal as the fine structure of space. The basis is assumed to be particle of mass mp that produces the spherically symmetric periodic Coulombic potential. The crystal is cubic with a lattice constant of Lp. The dispersion curve (Top Right) and effective mass (Bottom Right) of a non-relativistic point particle of mass mp within the crystal calculated using EPM. The TBM yields similar results but is most accurate for heavier particles. It is seen that the effective inertial mass is not constant and is dependent on the crystal momentum of the particle. At low velocities, it is equal to the gravitational mass (blue dashed line), but at high velocities it can be large and positive, near zero or negative. increases and can assume effective values either much larger or smaller than the gravitational mass, be near zero, or even be negative. Inertial anomalies of black holes and galaxies are then discussed. Once the effective inertial mass is calculated, the concept of the GC is connected to the field of metamaterials. This is done by introducing a constitutive relation between the gravitational field and gravitational flux (similar to electric and magnetic fluxes in materials) with a constant of proportionality (a gravitational permeability µg) that can unexpectedly take on values other than those normally encountered (unity in the case of gravity and for optical metamaterials anything other than double negative materials (i.e., < 0 and µ < 0)). Thus, the inclusion of the crystal´s effects is done via µg while keeping the inertial mass and gravitational masses equal to each other. Values for µg can vary from large and positive, to near-zero, to negative values. However if this concept proves to be true, then this new metamaterial is not meta at all - it is not beyond nature, but the fabric of nature itself. In conclusion, this paper revisits two historical concepts introduced by Werner Heisenberg and John Wheeler concerning the discretization of space in the form of a universe-wide gravity crystal. The calculation of the dispersion curves is performed, as well as the effective masses of particles within this crystal. The inertial anomalies that the crystal produces and its connection to the field of metamaterials are discussed. REFERENCES 1. W. Heisenberg. The Self-Energy of the Electron. In A. Miller, editor, Early Quantum Electro- dynamics, pages 121-128. Cambridge Univeristy Press, 1994/1930. 2. B. Carazza and H. Kragh. Heisenberg's Lattice World: The 1930 Theory Sketch. American Journal of Physics, 63:597-598, 1995. 3. Hagar, Amit. Discrete or continuous?: the quest for fundamental length in modern physics., pages 69-78 Cambridge University Press, 2014. 4. Wheeler, John A. "On the nature of quantum geometrodynamics." Annals of Physics 2.6 (1957): 604-614. 5. Vasileska, Dragica, Stephen M. Goodnick, and Gerhard Klimeck. Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC press, 2010. 6. Ashcroft, N. W. (1976). ND Mermin Solid state physics. pages 176-185, Saunders College, Philadelphia...