Lower Triassic

Total Page:16

File Type:pdf, Size:1020Kb

Lower Triassic Permian / Triassic (236 - 273 Ma time-slice) Time ScaLe R Creator CHRONOS Cen Updated by James G. Ogg (Purdue University) and Gabi Ogg to: GEOLOGIC TIME SCALE 2004 (Gradstein, F.M., Ogg, J.G., Smith, A.G., et al.; Cambridge Univ. Press) Mesozoic Paleozoic Sponsored, in part, by: Precambrian {See chapter on the Triassic Period in The Concise Geologic Time Scale (Ogg, J.G., Ogg, G., and Gradstein, F.M.; 2008; Cambridge Univ. Press) for potential revisions in Triassic time scale and zonations} ICS Based, in part, on: CENOZOIC-MESOZOIC BIOCHRONOSTRATIGRAPHY: JAN HARDENBOL, JACQUES THIERRY, MARTIN B. FARLEY, THIERRY JACQUIN, PIERRE-CHARLES DE GRACIANSKY, AND PETER R. VAIL,1998. Mesozoic and Cenozoic Sequence Chronostratigraphic Framework of European Basins in: De Graciansky, P.- C., Hardenbol, J., Jacquin, Th., Vail, P. R., and Farley, M. B., eds.; Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Special Publication 60. Standard Geo- Ammonites Conodonts Sequences Larger Benthic Foraminifers Dinoflagellate Radiolarians Ostracodes Spores / Pollen Verte- Stage Age Chronostratigraphy magnetic Cysts brates Age Zones Zones Polarity Paleozoic Sequences T-R Major T-R Zones Charo- phytes Period N. America Zones Zonal Markers Global, Tethyan Zones Markers Alpine/Germanic Arctic Epoch Stage Substage Boreal High Boreal Tethyan (Orchard & Tozer, 1997) Tethys (Kozur, 2003) Cycles Cycles Tethys (Kozur, 2003) Zonal Markers Boreal Ostracodes Eoprotrachyceras Eoprotrachyceras Eoprotrachyceras Intornites oleshkoi Ladinian Fassanian matutinum curionii curionii Duplicisporites granulatus Ladinian 237.0 Budurovignathus 237.0 Curionii-R Parafrechites Paragondolella? trammeri sublaqueatus Chieseiceras chiesense trammeri - Neogondolella aequidentata Ovalipollis pseudoalatus, T. verrucata Frechites chischa Frechites nevadanus Frechites nevadanus (un-named) Ladinocampe multiperforata K. apiculatus Nevadites Serpianites serpianensis Amphipopanoceras Camerosporites secatus dzeginense Neogondolella aequidentata Partitisporites spp. "Greece, Italy, "Greece, Italy, Stellatochara Austria, Turkey" Turkey" Austria, Paragondolella ex gr. excelsa hoellvicensis Nevad-N1 Paragondolella? trammeri Illyrian Prodiploxipinus spp. (ornamented), Dyupetalum vicentinensis Ticinites crassus trammeri - Paragondolella T. fisheri, Triassellina ssp. Chasmatosporites spp. alpina Paragondolella? trammeri trammeri, G. G. subtilis J. punctispinosa, K. punctatus Gymnotoceras pseudolonga S. Hemisphere: S. ottii P. hellenica 240 Partitisporites spp., Ovalipollis 240 olenekense G. hanbulogi Pilammina densa pseuodoalatus, Staurosaccites Stellapollenites thiergartii Eogymnotoceras Gymnotoceras Aplococeras avisianum quadrifidus Paragondolella alpina - 240.4 deleeni rotelliformis An4 Kuglerina meieri Paragondolella? trammeri Hungarites Spongosilicar. Italicus Middle Hungar-N Reitziites reitzi praetrammeri Paragondolella alpina Pilammina densa F. calcaneum Neogondolella mesotriassica Neogondolella mesotriassica Spongosilicar. transitus Anisian Amphipopanoceras Paraceratites trinodosus Anisian Paraceratites Neogondolella constricta Tetraspinocyrtis laevis asseretoi Neogondolella constricta 241.5 Schreyerites abichii An3 (no dated radiolarians) S.(P.) petersbergensis Paragondolella bifurcata Gladigondolella tethydis, Paragondolella Schr. binodosus excelsus, G. cornuta Paulbrownnimannia judicariensis, Parasepsagon robustus C. cristatus, I. kosankei, Czekanowskites Meandrospira dinarica, Microachrydites fastidioides, V. Hollandites minor Paragondolella ex gr. excelsus, Paulbrownnimannia Meandrospira pusilla jenensis, K. apiculatus Balat-R gastroplanus Balatonites balatonicus Bal. balatonicus Barantuna cristianensis Pelsonian Paragondolella bifurcata judicariensis Arctohungarites Paulbrownnimannia judicariensis, Triadispora (acme), (T.crassa, T. Cuccoceras cuccense Nicoraella kockeli, G. hanbulogi Pilammina densa kharaulakhensis suspecta, T. plicata) Arctohungarites I. chitonoides Anagymnotoceras varium Tetsaoceras hayesi "unnamed" laevigatus Aghdarbandites Paragondolella bulgarica 242.9 Paroertlispongus C. gunyalensis, A. macrocavatus An2 , Tridiaspora plicata Kocaelia ismidicus diacanthus Bithynian Neogondolella regale Aratisporites saturni, P. Kocae-N Czekanowskites Arctoh. triformis "unnamed" longdonensis Buddhaites haugei Paragondolella bulgarica, G. malayensis , Poland" decipiens Arctoh. ventroplanus Nicomedites osmani budurovi Stellatochara Dyupetalum vicentinensis, C. 243.7 dnjeproviformis nevesi "Albania, Greece An1 Meandrospira Groenlandites nahwisi Lenotropites caurus Densosporites nejburgii, C. Lenotropites caurus dinarica gunyalensis, J. conmilvinus, D. Arctohungarites bufonis Lenotropites solitarius Neogondolella? regalis insolitus I. chitonoides Densosporites nejburgii Stenopopanoceras Neogondolella? regalis Silberlingites mulleri Paracrochordiceras Hozmadia gifuensis Aegean Grambergia taimyrensis mirabile Triassic Karangatites evolutus Chiosella timorensis (Triadispora crassa, T. suspects, Alisporites cymbatus [ un-named ] T. plicata) Angustisulcites spp., S. (Cornutisporites) seebergensis, Paracr-N I. chitonoides, A. circumdatus 245 245 245.0 Karang. arkhipovi Chiosella timorensis Meandrospira dinarica Stellapollenites thiergartii 245.0 Keyserlingites Neospathodus waageni, 245.4 Densosporites nejburgii (common), Densoisporites spp. (common), A. Olenekites spiniplicatus [ un-named ] Ol 4 A. spiniger subrobustus Chiosella gondolelloides Scythodondolella milleri Triadispora crassa D. (Triplexisporites) playfordii robustus, P. reticulatus, V. SpR2 Chiosella gondolelloides (?) jenensis Triassospathodus sosioensis Triassospathodus sosioensis (?) Olenikites pilaticus Parasiberites grambergi Toziceras pakistanum Neospathodus triangularis / Neospath. crassatus Triassospathodus triangularis Hozmadia ozawai - Triassospathodus triangularis 246.6 J. punctispinosa Spathian Ol 3 Meandrospira pusilla Parentactinia Neospathodus collinsoni nakatsugaraensis Nordophiceras Triassospathodus homeri Cycloverrutriletes presselensis, L. Neospathodus homeri contrarium brevicula, L. obsoleta SpR1 247.4 triassica [ un-named ] Tirolites cassianus Icriospathodus collinsoni Ol 2 Porochara C. gunyalensis, J. conmilvinus, Neospathodus dieneri D. insolitus A. robustus Bajarunia euomphala Triassospathodus hungaricus Neogondolella jubata 248.1 Meandrospira pusilla Olenekian Triassospathodus hungaricus Ol 1 Olenekian Early Kraeuseli saeptatus, L. variabilis, 2 Neospathodus waageni - P. disertus, P. fungosus, N. Neospathodus pakistanensis, striatus (common) Anawasachites tardus Wassachites tardus (mixed assemblage) Scythogondolella milleri Scythogondolella milleri Neospathodus cristagalli RADIOLARIANS 1 Neospathodus waageni UNKNOWN Neospathodus waageni - Smithian Euflemingites Neospathodus waageni Lepiskites kolymensis Scythogondolella meeki (un-named) romunderi Hedenstr. hedenstroemi Chengyuania nepalensis Meekoceras gracilitatis Arctic Stratotypes of Neospathodus pakistanensis SmN1 Stages Triassic Early Hedenstr. hedenstroemi Hedenstr. hedenstroemi Chengyuania nepalensis 249.7 Kingites? korostelevi Neospathodus pakistanensis 249.7 3 Neospathodus dieneri, Hindeodus Stigmosphaerostylus Vavilovites turgidus Neospathodus dieneri typicalis, Neospathodus cristagalli 250.0 Lundbladispora spp. (common), Vavilovites sverdrupi 2 Flemingites rohilla In2 turkensis Pechorosporites spp. (common) 250 250 Vav. sverdrupi Clarkina carinata Lundbladispora spp. (common) Dienerian Neospathodus cristagalli / Sweetospathodus kummeli Sweetospathodus kummeli 1 Rectocornuspira Rectocornuspira kahlori Proptychites candidus [ un-named ] Gyronites frequens Sweetospathodus kummeli Rectocornuspira kahlori globosa ? S. richteri, P. pococki Neospathodus kummeli Clarkina postcarinata Porochara / Clarkina postcarinata In1 kahlori Vladimiriella Induan Propty. strigatus Wordieoceras decipiens Ophiceras connectens Clarkina carinata 250.2 RADIOLARITE GAP of Earliest Induan Isarcicella isarcica U. imperialis, P. pococki Gries- Neogondolella carinata / Clarkina carinata Triassic !! C. chalasta C. chalasta (common) Ophiceras commune Tompophiceras + Oph. tibeticum Isarcicella isarcica Tompophiceras pascoei Hindeodus parvus RADIOLARIANS bachian upper morphaeus Ot. woodwardi (upper) Hindeodus parvus Isarcicella isarcica 251.0 Otoceras boreale Otoceras woodwardi UNKNOWN 251.0 GN1 lower Otoceras boreale Otoceras boreale Ot. woodwardi (lower) 251.2 Otoceras concavum Otoceras concavum Clarkina meishanensis - H. Hindeodus parvus RADIOLARITE GAP of Earliest [ un-named ] end-Perm Triassic !! praeparvus Clarkina meishanensis Clarkina hauschkei Pseudotirolites Clarkina yini Clarkina changxingensis Paleofusulina Paratirolites Clarkina subcarinata Changhsingian Clarkina wangi Changhsingian Iranites 253.8 Clarkina wangi 253.8 Araxoceras Clarkina orientalis 255 255 Colaniella Lopingian Anderssonoceras Clarkina transcaucasica endothiodontid/ dicynodontid empire Clarkina guangyuanensis Wuchiapingian Wuchiapingian Wuchiapingian Clarkina leveni Series Illawara Clarkina asymetrica Clarkina dukouensis 260 260 Lepidolina 260.4 Clarkina postbitteri Clarkina postbitteri 260.4 Roadoceras-Doulingoceras Jinogondolella altudaensis Yabeina Permian Capitanian Capitanian Timorites Jinogondolella Polydiexodina postserrata 265 265 Neoschwagerina magaritae 265.8 Jinogondolella postserrata 265.8 Guadalupian Wordian Jinogondolella aserrata Neoschwagerina Wordian Waagenoceras 268.0 Jinogondolella aserrata 268.0 tapinocephalid empire Cancellina cutalensis Jinogondolella Roadian nankingensis Roadian Hyperchron 270 270 Demarezites 270.6 Kiaman Reversed-polarity Jinogondolella nankingensis 270.6 Neostreptognathodus Misellina sulcoplicatus Pseudovidrioceras Cisuralian Kungurian Kungurian Neostreptognathodus pequopensis Propinacoceras September 2008.
Recommended publications
  • CONODONT BIOSTRATIGRAPHY and ... -.: Palaeontologia Polonica
    CONODONT BIOSTRATIGRAPHY AND PALEOECOLOGY OF THE PERTH LIMESTONE MEMBER, STAUNTON FORMATION (PENNSYLVANIAN) OF THE ILLINOIS BASIN, U.S.A. CARl B. REXROAD. lEWIS M. BROWN. JOE DEVERA. and REBECCA J. SUMAN Rexroad , c.. Brown . L.. Devera, 1.. and Suman, R. 1998. Conodont biostrati graph y and paleoec ology of the Perth Limestone Member. Staunt on Form ation (Pennsy lvanian) of the Illinois Basin. U.S.A. Ill: H. Szaniawski (ed .), Proceedings of the Sixth European Conodont Symposium (ECOS VI). - Palaeont ologia Polonica, 58 . 247-259. Th e Perth Limestone Member of the Staunton Formation in the southeastern part of the Illinois Basin co nsists ofargill aceous limestone s that are in a facies relati on ship with shales and sandstones that commonly are ca lcareous and fossiliferous. Th e Perth conodo nts are do minated by Idiognathodus incurvus. Hindeodus minutus and Neognathodu s bothrops eac h comprises slightly less than 10% of the fauna. Th e other spec ies are minor consti­ tuents. The Perth is ass igned to the Neog nathodus bothrops- N. bassleri Sub zon e of the N. bothrops Zo ne. but we were unable to co nfirm its assignment to earliest Desmoin esian as oppose d to latest Atokan. Co nodo nt biofacies associations of the Perth refle ct a shallow near- shore marine environment of generally low to moderate energy. but locali zed areas are more variable. particul ar ly in regard to salinity. K e y w o r d s : Co nodo nta. biozonation. paleoecology. Desmoinesian , Penn sylvanian. Illinois Basin. U.S.A.
    [Show full text]
  • Taxonomy, Stratigraphy and Phylogeny of the Ne\T Genus Lanceoptychites (Ammonoidea, Anisian)
    Rivìsta Italiana di Paleontologia e Stratigrafia pagine 143-i66 TAXONOMY, STRATIGRAPHY AND PHYLOGENY OF THE NE\T GENUS LANCEOPTYCHITES (AMMONOIDEA, ANISIAN) MARCO BALINI Receìoed February 10, 1998; accepted ApriL 3, 1998 Key-zuords: Ammonoidea, Population analysis, Triassic, Ani- Damit kann bewiesen werden, dafl das Auftreten einer subakuten./fa- sien, Biostratigraphy, Phylogeny, Northern Alps, Southern Alps. stigaten Externseite unci eines lanzettfórmigen \'Vindungsquerschnitts wlhrend des lVachstums, bei flachen Ptychitidae, eine normale onto- Riassunto. Viene effettuato per la prima volta uno studio po- genetische Entwicklung darstellt und dass es sich dabei nicht um 'Va- polazionistico degli Ptychitidae compressi (Ammonoidea) raccolti chstumsanomalien handelt, wie rnanchrnal rn der Literatur vermutet strato-per-strxto nel Calcare dr Prezzo (Anisico superiore, Alpi meri- wurde. Ammonoideen mit einer solch eigentùmlicher Ontogenese dionali). Si dimostra come in alcune popolazioni di Ptychitidi com- werden nun aus der Gattung Flexoptychites, zt d.er nur noch flache pressi durante I'ontogenesi si possa verificare una modificazione del Ptychitiden mit gerundeter Externseite gerechnet werden, ;rusgeglie- ventre, che diventa subacuto/Íastigato mentre la sezione deì giro di- den und zur neuen Gattung Lanceoptychìtes gestellt. Die neue Gat- venta lanceolata. Questo particolare sviluppo della zona ventrale non tung ist eine sekundàre Abspeltung von F/exoptychires und umfasst è dovuto ad anomalie di crescita, come talvolta riponato in letteratu- zur Zett aus vier Arten: Lanceoptycbites telox sp. n, (Typusrrt), l sryx ra, ma è un normale sviluppo ontogenetico. Gli Ammonoidi con que- sp. n., l. indistinctus (Mojsisovics, 1882) und L. cbarlyanus (Diener, sto tipo particolare di ontogenesi sono separati dal genere Flexoptychi- 1900). Z. sllx und seine peramorphe Abspaltung L.
    [Show full text]
  • 1 Revision 2 1 K-Bentonites
    1 Revision 2 2 K-Bentonites: A Review 3 Warren D. Huff 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221 USA 5 Email: [email protected] 6 Keywords: K-bentonite, bentonite, tephra, explosive volcanism, volcanic ash 7 Abstract 8 Pyroclastic material in the form of altered volcanic ash or tephra has been reported and described 9 from one or more stratigraphic units from the Proterozoic to the Tertiary. This altered tephra, 10 variously called bentonite or K-bentonite or tonstein depending on the degree of alteration and 11 chemical composition, is often linked to large explosive volcanic eruptions that have occurred 12 repeatedly in the past. K-bentonite and bentonite layers are the key components of a larger group of 13 altered tephras that are useful for stratigraphic correlation and for interpreting the geodynamic 14 evolution of our planet. Bentonites generally form by diagenetic or hydrothermal alteration under 15 the influence of fluids with high Mg content and that leach alkali elements. Smectite composition is 16 partly controlled by parent rock chemistry. Studies have shown that K-bentonites often display 17 variations in layer charge and mixed-layer clay ratios and that these correlate with physical 18 properties and diagenetic history. The following is a review of known K-bentonite and related 19 occurrences of altered tephra throughout the time scale from Precambrian to Cenozoic. 20 Introduction 21 Volcanic eruptions are often, although by no means always, associated with a profuse output 22 of fine pyroclastic material, tephra. Tephra is a term used to describe all of the solid material 23 produced from a volcano during an eruption (Thorarinsson, 1944).
    [Show full text]
  • Permophiles Issue
    Contents Notes from the SPS Secretary ...........................................................................................................................1 Shen Shuzhong Notes from the SPS Chair ..................................................................................................................................2 Charles M. Henderson Meeting Report: Report on the Continental Siena Meeting, Italy, September 2006.....................................3 G. Cassinis, A. Lazzarotto, P. Pittau Working Group Report: Short report on 2005-2006 activities of the non-marine – marine correlation work- ing group of SPS ..................................................................................................................................................5 J.W. Schneider Report of SPS Working Group on “Using Permian transitional biotas as gateways for global correlation”7 Guang R. Shi International Permian Time Scale ...................................................................................................................10 Voting Members of the SPS ............................................................................................................................. 11 Submission guideline for Issue 49 ....................................................................................................................12 Reports: Ostracods (Crustacea) from the Permian-Triassic boundary interval of South China (Huaying Mountains, eastern Sichuan Province): paleo-oxygenation significance .......................................................12
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Catalog of Type Specimens of Invertebrate Fossils: Cono- Donta
    % {I V 0> % rF h y Catalog of Type Specimens Compiled Frederick J. Collier of Invertebrate Fossils: Conodonta SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 9 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti­ tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com­ mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes­ sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in­ terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Reconstruction of the Multielement Apparatus of the Earliest Triassic Conodont, Hindeodus Parvus, Using Synchrotron Radiation X-Ray Micro-Tomography
    Journal of Paleontology, 91(6), 2017, p. 1220–1227 Copyright © 2017, The Paleontological Society 0022-3360/17/0088-0906 doi: 10.1017/jpa.2017.61 Reconstruction of the multielement apparatus of the earliest Triassic conodont, Hindeodus parvus, using synchrotron radiation X-ray micro-tomography Sachiko Agematsu,1 Kentaro Uesugi,2 Hiroyoshi Sano,3 and Katsuo Sashida4 1Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan 〈[email protected]〉 2Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198, Japan 〈[email protected]〉 3Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan 〈[email protected]〉 4Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan 〈[email protected]〉 Abstract.—Earliest Triassic natural conodont assemblages preserved as impressions on bedding planes occur in a claystone of the Hashikadani Formation, which is part of the Mino Terrane, a Jurassic accretionary complex in Japan. In this study, the apparatus of Hindeodus parvus (Kozur and Pjatakova, 1976) is reconstructed using synchrotron radiation micro-tomography (SR–μCT). This species has six kinds of elements disposed in 15 positions forming the conodont apparatus. Carminiscaphate, angulate, and makellate forms are settled in pairs in the P1,P2, and M posi- tions, respectively. The single alate element is correlated with the S0 position. The S array is a cluster of eight rami- forms, subdivided into two inner pairs of digyrate S1–2 and two outer pairs of bipennate S3–4 elements. The reconstruction is similar to a well-known ozarkodinid apparatus model.
    [Show full text]
  • Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002).
    [Show full text]
  • Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
    Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids.
    [Show full text]
  • BIASES in INTERPRETATION of the FOSSIL RECORD of CONODONTS by MARK A
    [Special Papers in Palaeontology, 73, 2005, pp. 7–25] BETWEEN DEATH AND DATA: BIASES IN INTERPRETATION OF THE FOSSIL RECORD OF CONODONTS by MARK A. PURNELL* and PHILIP C. J. DONOGHUE *Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK; e-mail: [email protected] Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; e-mail: [email protected] Abstract: The fossil record of conodonts may be among and standing generic diversity. Analysis of epoch ⁄ stage-level the best of any group of organisms, but it is biased nonethe- data for the Ordovician–Devonian interval suggests that less. Pre- and syndepositional biases, including predation there is generally no correspondence between research effort and scavenging of carcasses, current activity, reworking and and generic diversity, and more research is required to bioturbation, cause loss, redistribution and breakage of ele- determine whether this indicates that sampling of the cono- ments. These biases may be exacerbated by the way in which dont record has reached a level of maturity where few genera rocks are collected and treated in the laboratory to extract remain to be discovered. One area of long-standing interest elements. As is the case for all fossils, intervals for which in potential biases and the conodont record concerns the there is no rock record cause inevitable gaps in the strati- pattern of recovery of different components of the skeleton graphic distribution of conodonts, and unpreserved environ- through time. We have found no evidence that the increas- ments lead to further impoverishment of the recorded ing abundance of P elements relative to S and M elements spatial and temporal distributions of taxa.
    [Show full text]
  • Ian, and the Early Upper Devonian Some Icriodus Species Such As
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ian, and the early Upper Devonian some Icriodus species such as /. fusiformis, I. culicellus, I. rectiro- stratus, I. retrodepressus, I. regularicrescens, I. obliquimarginatus and /. subterminus have a wide or so­ metimes nearly cosmopolite dispersion in different magnafacies areas (type Ardenno-Rhenish and Her- cynian-Bohemian) and there is no marked difference in the earliest occurrence of each species. This means that the geographical dispersion of at least some Icriodus species was due primarily to good com­ munication seaways which could be modified in the course of time and not to very specialised local fa­ des factors. Having in mind the SEDDON and SWEET model for conodonts, the dominance of Icrio­ dus in shallow water shelf environment implies no restriction in geographical dispersion. Particularly in this environment, anomalies in the vertical distribution ofPolygnathus taxa, e. g.,-P. serotinus, P. lingui- formis div. subspecies, P. cooperi cooperi can be noticed. Reexamination of Late Pennsylvanian and Early Permian Conodont Apparatuses Using Clustering Techniques. By T. R. CARR Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706, USA. Conodont faunas containing easily identified Pa elements assignable to the genera Diplognathodus and Hindeodus have been reported from Upper Pennsylvanian and Lower Permian strata of North Ame­ rica. If the seximembrate model for the apparatus of each genus is correct, the remaining elements should also be present. However, previous investigators have normally considered ramiform elements which might be assignable to the two genera as attributable to species of either the Idiognathodus— Streptognathodus plexus or Adetognathus.
    [Show full text]
  • Pander Society Newsletter
    Pander Society Newsletter S O E R C D I E N T A Y P 1 9 6 7 Compiled and edited by P.H. von Bitter and J. Burke PALAEOBIOLOGY DIVISION, DEPARTMENT OF NATURAL HISTORY, ROYAL ONTARIO MUSEUM, TORONTO, ON, CANADA M5S 2C6 Number 41 May 2009 www.conodont.net Webmaster Mark Purnell, University of Leicester 2 Chief Panderer’s Remarks May 1, 2009 Dear Colleagues: It is again spring in southern Canada, that very positive time of year that allows us to forget our winter hibernation & the climatic hardships endured. It is also the time when Joan Burke and I get to harvest and see the results of our winter labours, as we integrate all the information & contributions sent in by you (Thank You) into a new and hopefully ever better Newsletter. Through the hard work of editor Jeffrey Over, Paleontographica Americana, vol. no. 62, has just been published to celebrate the 40th Anniversary of the Pander Society and the 150th Anniversary of the first conodont paper by Christian Pander in 1856; the titles and abstracts are here reproduced courtesy of the Paleontological Research Institution in Ithica, N.Y. Glen Merrill and others represented the Pander Society at a conference entitled “Geologic Problem Solving with Microfossils”, sponsored by NAMS, the North American Micropaleontology Section of SEPM, in Houston, Texas, March 15-18, 2009; the titles of papers that dealt with or mentioned conodonts, are included in this Newsletter. Although there have been no official Pander Society meetings since newsletter # 40, a year ago, there were undoubtedly many unofficial ones; many of these would have been helped by suitable refreshments, the latter likely being the reason I didn’t get to hear about the meetings.
    [Show full text]