Eliciting Worker Preference for Task Completion

Total Page:16

File Type:pdf, Size:1020Kb

Eliciting Worker Preference for Task Completion Eliciting Worker Preference for Task Completion Mohammad Esfandiari #1, Senjuti Basu Roy #1, Sihem Amer-Yahia ∗2 # NJIT, USA 1 [email protected], [email protected] ∗ Univ. Grenoble Alpes, CNRS, LIG, France 2 [email protected] Abstract—Current crowdsourcing platforms provide little sup- In this paper, our objective is to design a framework that port for worker feedback. Workers are sometimes invited to advocates for explicit preference elicitation from workers to post free text describing their experience and preferences in develop a model that guides task completion. That differs completing tasks. They can also use forums such as Turker Nation1 to exchange preferences on tasks and requesters. In fact, from developing solutions for task assignment. The objective crowdsourcing platforms rely heavily on observing workers and behind preference elicitation is to use obtained feedback to inferring their preferences implicitly. In this work, we believe effectively maintain a Worker Model. Given a task t that a that asking workers to indicate their preferences explicitly improve worker w undertakes (either via self-appointment or via an their experience in task completion and hence, the quality of their assignment algorithm), there could be one of two possible contributions. Explicit elicitation can indeed help to build more accurate worker models for task completion that captures the outcomes : 1. the task is completed successfully. 2. otherwise. evolving nature of worker preferences. We design a worker model In reality, worker preferences are latent, i.e., they are to whose accuracy is improved iteratively by requesting preferences be inferred through task factors and task outcomes. Popular for task factors such as required skills, task payment, and task platforms, such as Mechanical Turk or Prolific Academic,3, relevance. We propose a generic framework, develop efficient have characterized tasks using factors, such as type, payment solutions in realistic scenarios, and run extensive experiments that show the benefit of explicit preference elicitation over implicit and duration. While our framework is capable to consume any ones with statistical significance. available task factors, our effort nevertheless is to propose a generic solution that characterizes workers by understanding I. INTRODUCTION their preferences for a given set of task factors [3], [4]. Our overarching goal is to seek feedback from workers to The main actors of a crowdsourcing platform are tasks and effectively maintain a Worker Model for task completion. To workers who complete them. A range of studies point out the achieve this goal, the first challenge is to define an accurate importance of designing incentive schemes, other than finan- model that predicts, per worker, how much each task factor is cial ones, to encourage workers during task completion [1], responsible for the successful completion of that task or for [2]. In particular, it is expected that a crowdsourcing system its failure. We propose to bootstrap this model by selecting should “achieve both effective task completion and worker a small set of tasks a worker needs to complete initially to satisfaction”. The ability to characterize the workforce with learn her model. An equally important challenge is to update factors that influence task completion is recognized to be the Worker Model, as workers complete tasks. Indeed, unless of great importance in building such a system [3], [4], [5], that model is updated periodically, it is likely to become [6], [7], [8], [9], [10], [11]. Those efforts have focused on outdated, as worker’s preferences evolve over time. To update implicitly observing workers and inferring their preferences. In the model, we advocate the need to explicitly elicit from a this paper, we argue that solely relying on implicit observations worker her preferences. That is a departure from the literature does not suffice and propose to elicit preferences from workers where workers are observed and their preferences computed explicitly, as they complete tasks. Any computational model, arXiv:1801.03233v1 [cs.DB] 10 Jan 2018 implicitly. We claim that the explicit elicitation of preferences designed for the workers to understand their task completion results in a more accurate Worker Model. Preferences are likelihood needs to consume worker preference. The evolving elicited via the Question Selector that selects a set of k task nature of worker preference requires to periodically ask work- factors and asks a worker w to rank them. For example, a ers and refine such models. To the best of our knowledge, this worker may be asked “Rank task relevance and payment”.A work is the first to examine the benefit of explicit preference higher rank for payment will indicate the worker’s preference elicitation from workers and its impact on effective task for high paying tasks over those most relevant to her profile. completion. Our proposed approach of explicit preference Once the worker provides her preference, the Worker Model elicitation does not incur additional burden to the workers; is updated with the help of the Preference Aggregator. in fact, platforms such as, Amazon Mechanical Turk2 already Question Selector and Preference Aggregator constitute the seek worker feedback in the form of free text. Our effort is to two computational problems of our framework. judiciously select questions for elicitation in a stuctured and holistic fashion. Worker Model. Our natural choice is to use a graphical model [12], such as a Bayesian Network where each node 1http://turkernation.com/ 2https://www.mturk.com/ 3https://www.prolific.ac/ is a random variable (task factors/worker preference/task out- tion. We present an innovative formulation to bootstrap come) and the structure of the graph expresses the conditional the model. An important aspect of the model is that it dependence between those variables. The observed variables could be easily adapted to other crowdsourcing processes, are task factors and task outcomes and the Worker Model such as, task assignment or worker compensation. We contains worker preferences in the form of latent variables present two core problems around the model: Question that are inferred through that model. It is however known Selector that asks a worker to rank the k task factors that structure learning in Bayesian Network is NP-hard [12] that cause the highest error in the model, and Preference and that the parameters could be estimated through methods Aggregator that updates the model with elicited prefer- such as Expectation Maximization, that also are computa- ences. tionally expensive. As both Question Selector and Prefer- • Technical Results (Section III): We study the hardness ence Aggregator have to invoke the model many times, it of our problems and their reformulation under realistic becomes prohibitively expensive to use it in real time. We assumptions, as well as design efficient solutions with therefore propose a simplified model that has a one-to-one provable guarantees. correspondence between task factors and worker preference. • Experimental Results (Section IV): We present extensive The preference of a worker for a task factor is construed as a experiments that corroborate that explicit preference elic- weight and the Worker Model becomes a linear combination itation outperforms implicit preferences [13], and that our of the task factors. This simplification allows us to design framework scales well. efficient solutions. Question Selector. The question selector intends to select II. FORMALISM AND FRAMEWORK the k-task factors whose removal maximizes the improvement We present our formalism, following which we provide an of the Worker Model F. The idea is to present those uncertain overview of the proposed framework and the problems we factors to the worker and seek her explicit preference. We tackle. prove that optimally selecting k questions, i.e., k task factors Example 1: We are given a set of tasks, where each task is for a worker, is NP-hard, even when the Worker Model is characterized by a set of factors (e.g., type, payoff, duration are linear. We develop an efficient alternative using an iterative some examples). A task could be of different types, such as, greedy algorithm that has a provable approximation bound. image tagging, ranking, sentiment analysis. Payoff determines Preference Aggregator. The second technical problem is to the $ value the workers receives as payment, whereas, duration update the Worker Model with the elicited preference. Given is an indication of the time a worker needs to complete that a set of k task factors, worker w provides an absolute order task. Generalizing this, one can imagine that each task could on these factors. The obtained ranking is expressed as a set be described as a vector of different factors and a set of tasks of k(k − 1)=2 pairwise linear constraints, as i > j, i > l, together gives rise to a task factor matrix T f . One such matrix etc. We design an algorithm that updates the Worker Model of 6 tasks is presented below: using the same optimization function as the one used to build it 8id tagging ranking sentiment payoff duration outcome9 initially, modified by adding those constraints. With a Bayesian > > >t1 1 0 0 high long 1 > Network as the underlying model, the addition of dummy <>t2 1 0 0 low short 0 => variables would encode the constraints aptly. However, with t3 0 1 0 low short 1 >t4 0 1 0 low long 0 > one variable per constraint, the solution would not scale. For > > :>t5 0 0 1 high short 1 ;> the simplified linear Worker Model, we add them as pairwise t6 0 0 1 high long 0 linear constraints. The problem then becomes a constrained Given a task t that a worker w undertakes (either via self- least squares problem that could be solved optimally in poly- appointment or via an assignment algorithm), there could be nomial time. one of two possible outcomes : 1. the task is completed We run experiments that measure the accuracy of our successfully (denoted by 1).
Recommended publications
  • Learning Preferences of New Users in Recommender Systems: an Information Theoretic Approach
    Learning Preferences of New Users in Recommender Systems: An Information Theoretic Approach Al Mamunur Rashid, George Karypis, and John Riedl Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN-55455 {arashid, karypis, riedl}@cs.umn.edu Abstract. Recommender systems are a nice tool to help nd items of interest from an overwhelming number of available items. Collaborative Filtering (CF), the best known technology for recommender systems, is based on the idea that a set of like-minded users can help each other nd useful information. A new user poses a challenge to CF recommenders, since the system has no knowledge about the preferences of the new user, and therefore cannot provide personalized recommendations. A new user preference elicitation strategy needs to ensure that the user does not a) abandon a lengthy signup process, and b) lose interest in returning to the site due to the low quality of initial recommendations. We extend the work of [23] in this paper by incrementally developing a set of in- formation theoretic strategies for the new user problem. We propose an oine simulation framework, and evaluate the strategies through exten- sive oine simulations and an online experiment with real users of a live recommender system. 1 Introduction Collaborative Filtering (CF)-based recommender systems generate recommen- dations for a user by utilizing the opinions of other users with similar taste. These recommender systems are a nice tool bringing mutual benets to both users and the operators of the sites with too much information. Users benet as they are able to nd items of interest from an unmanageable number of available items.
    [Show full text]
  • Preference Elicitation Techniques for Group Recommender Systems ⇑ Inma Garcia , Sergio Pajares, Laura Sebastia, Eva Onaindia
    Information Sciences xxx (2011) xxx–xxx Contents lists available at SciVerse ScienceDirect Information Sciences journal homepage: www.elsevier.com/locate/ins Preference elicitation techniques for group recommender systems ⇑ Inma Garcia , Sergio Pajares, Laura Sebastia, Eva Onaindia Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain article info abstract Article history: A key issue in group recommendation is how to combine the individual preferences of dif- Received 31 January 2011 ferent users that form a group and elicit a profile that accurately reflects the tastes of all Received in revised form 18 October 2011 members in the group. Most Group Recommender Systems (GRSs) make use of some sort Accepted 26 November 2011 of method for aggregating the preference models of individual users to elicit a recommen- Available online xxxx dation that is satisfactory for the whole group. In general, most GRSs offer good results, but each of them have only been tested in one application domain. Keywords: This paper describes a domain-independent GRS that has been used in two different Group recommender systems application domains. In order to create the group preference model, we select two tech- Group profile Preference elicitation niques that are widely used in other GRSs and we compare them with two novel tech- niques. Our aim is to come up with a model that weighs the preferences of all the individuals to the same extent in such a way that no member in the group is particularly satisfied or dissatisfied with the final recommendations. Ó 2011 Elsevier Inc. All rights reserved. 1. Introduction A Recommender System (RS) [52] is a widely used mechanism for providing advice to people in order to select a set of items, activities or any other kind of product.
    [Show full text]
  • Diverse User Preference Elicitation with Multi-Armed Bandits
    Session 3: Recommender Systems WSDM ’21, March 8–12, 2021, Virtual Event, Israel Diverse User Preference Elicitation with Multi-Armed Bandits Javier Parapar∗ Filip Radlinski [email protected] [email protected] Universidade da Coruña Google Research A Coruña, Spain London, United Kingdom ABSTRACT 1 INTRODUCTION Personalized recommender systems rely on knowledge of user pref- Recommender Systems (RSs) [46] have become ubiquitous for rec- erences to produce recommendations. While those preferences are ommending movies [19], music [54], books [57], news [34], and in often obtained from past user interactions with the recommenda- numerous other domains. Their goal is to help users more quickly tion catalog, in some situations such observations are insufficient find relevant items in vast catalogues. or unavailable. The most widely studied case is with new users, One of the most common approaches is Collaborative Filtering although other similar situations arise where explicit preference (CF), which depends on rich user preference information to discover elicitation is valuable. At the same time, a seemingly disparate relationships between items, and in turn allows user-user and item- challenge is that there is a well known popularity bias in many al- item similarity to be estimated. Given a user profile, items of interest gorithmic approaches to recommender systems. The most common to similar users can then be suggested. Preferences can be explicit way of addressing this challenge is diversification, which tends to (for example, ratings on books, or likes of posts) or implicit (for be applied to the output of a recommender algorithm, prior to items example, the history of songs a user has listened to, or films the user being presented to users.
    [Show full text]
  • Leveraging Collective Intelligence in Recommender System
    Leveraging Collective Intelligence in Recommender System A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Shuo Chang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Loren G Terveen August, 2016 c Shuo Chang 2016 ALL RIGHTS RESERVED Acknowledgements Through the five years of my graduate school, I have received numerous support from my family, friends and colleagues. This thesis would not have been possible without them. First and foremost, I thank my advisor Dr. Loren Terveen for sharing his wisdom and helping me to grow. He gave me the freedom to pursue my research interest and challenge me to be better. During difficult times, he consuls me with his kindness and patience. I am forever grateful for what I have learned from him during this five years. I would also like to thank my committee members | Dr. Joseph Konstan, Dr. George Karypis and Dr. Yuqing Ren | for providing valuable feedback. I thank Ed Chi, Peng Dai and Elizabeth Churchill for giving me internship oppor- tunities and being awesome mentors. During the internships, I was fortunate to receive guidance and support from Atish Das Sarma, Lichan Hong, Jilin Chen and Zhiyuan Cheng. I am very thankful to be a member of the GroupLens research lab, which will always have a special place in my heart. I'd like to thank Dr. John Riedl for welcoming me to the GroupLens family. I truly enjoyed working and being friend with Max Harper, Vikas Kumar, Daniel Kluver, Tien Nguyen, Hannah Miller, Jaccob Thebault-Spieker, Aditya Pal, Isaac Johnson, Qian Zhao, Dr.
    [Show full text]
  • Preference Elicitation and Negotiation in a Group Recommender System Jesús Álvarez Márquez, Jurgen Ziegler
    Preference Elicitation and Negotiation in a Group Recommender System Jesús Álvarez Márquez, Jurgen Ziegler To cite this version: Jesús Álvarez Márquez, Jurgen Ziegler. Preference Elicitation and Negotiation in a Group Recom- mender System. 15th Human-Computer Interaction (INTERACT), Sep 2015, Bamberg, Germany. pp.20-37, 10.1007/978-3-319-22668-2_2. hal-01599849 HAL Id: hal-01599849 https://hal.inria.fr/hal-01599849 Submitted on 2 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Preference Elicitation and Negotiation in a Group Recommender System Jesús Omar Álvarez Márquez1, Jürgen Ziegler1 1University of Duisburg-Essen, Duisburg, Germany {jesus.alvarez-marquez, juergen.ziegler}@uni-due.de Abstract. We present a novel approach to group recommender systems that better takes into account the social interaction in a group when formulating, dis- cussing and negotiating the features of the item to be jointly selected. Our ap- proach provides discussion support in a collaborative preference elicitation and negotiation process. Individual preferences are continuously aggregated and immediate feedback of the resulting recommendations is provided. We also support the last stage in the decision process when users collectively select the final item from the recommendation set.
    [Show full text]
  • Eliciting Pairwise Preferences in Recommender Systems
    Eliciting Pairwise Preferences in Recommender Systems Saikishore Kalloori, Francesco Ricci and Rosella Gennari Free University of Bozen - Bolzano, Italy Piazza Domenicani 3, I - 39100, Bolzano, Italy [email protected],[email protected],[email protected] ABSTRACT from absolute item evaluations, e.g., user ratings or likes [31]. How- Preference data in the form of ratings or likes for items are widely ever, this type of preferences have few disadvantages, illustrated in used in many Recommender Systems. However, previous research previous literature [5, 22, 23]. For instance, if a user has assigned has shown that even item comparisons, which generate pairwise the highest rating to an item and, subsequently, the user nds that preference data, can be used to model user preferences. Moreover, he prefers another item to the rst one, the user has no choice but pairwise preferences can be eectively combined with ratings to to also give to this new item the highest rating [11]. Moreover, if compute recommendations. In such hybrid approaches, the Rec- most of the items are rated with the largest rating, then it is dicult ommender System requires to elicit both types of preference data to understand which items the user does like the most. from the user. In this work, we aim at identifying how and when to For such reasons, few researchers [5, 11, 22] have developed elicit pairwise preferences, i.e., when this form of user preference recommendation techniques that leverage an alternative way to data is more meaningful for the user to express and more benecial collect user preferences, namely, pairwise comparisons, such as for the system.
    [Show full text]
  • Towards Conversational Recommender Systems
    Towards Conversational Recommender Systems Konstantina Christakopoulou⇤ Filip Radlinski, Katja Hofmann University of Minnesota Microsoft United States Cambridge, UK [email protected] {filiprad, katja.hofmann}@microsoft.com ABSTRACT users by the characteristics of the items they like or dislike. People often ask others for restaurant recommendations as a We note that neither model represents how real people make way to discover new dining experiences. This makes restau- recommendations, particularly in a cold-start setting where rant recommendation an exciting scenario for recommender the person making a recommendation does not know a lot systems and has led to substantial research in this area. about the person asking for one. However, most such systems behave very di↵erently from Consider what would happen if a conference attendee in a human when asked for a recommendation. The goal of your home town, whom you have never met before, asked this paper is to begin to reduce this gap. for a recommendation on where to eat dinner today. Most In particular, humans can quickly establish preferences likely, you would start with one or two clarifying questions, when asked to make a recommendation for someone they do perhaps whether the person likes seafood, or whether they not know. We address this cold-start recommendation prob- have a car. These questions would depend on the context; lem in an online learning setting. We develop a preference for instance if there are great restaurants around the corner, elicitation framework to identify which questions to ask a then whether they have a car would be irrelevant. new user to quickly learn their preferences.
    [Show full text]
  • Mining Large Streams of User Data for Personalized Recommendations
    Mining Large Streams of User Data for Personalized Recommendations Xavier Amatriain Netflix xamatriain@netflix.com ABSTRACT solutions - think, for example, of ranking metrics such as Normalized Discounted Cumulative Gain (NDCG) or other The Netflix Prize put the spotlight on the use of data min- information retrieval ones such as recall or area under the ing and machine learning methods for predicting user pref- curve (AUC). Beyond the optimization of a given offline met- erences. Many lessons came out of the competition. But ric, what we are really pursuing is the impact of a method on since then, Recommender Systems have evolved. This evo- the business. Is there a way to relate the goodness of an algo- lution has been driven by the greater availability of different rithm to more customer-facing metrics such as click-through kinds of user data in industry and the interest that the area rate (CTR) or retention? I will describe our approach to in- has drawn among the research community. The goal of this novation called \Consumer Data Science" in section 3.1. paper is to give an up-to-date overview of the use of data mining approaches for personalization and recommendation. But before we understand the reasons for all these effects, Using Netflix personalization as a motivating use case, I will and before we are ready to embrace the open research ques- describe the use of different kinds of data and machine learn- tions in the area of personalization described in Section 5, ing techniques. we need to understand some of the basic techniques that enable the different approaches.
    [Show full text]
  • User Preference Elicitation, Rating Sparsity and Cold Start: Algorithms, Practical Challenges and Applications
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329398751 User Preference Elicitation, Rating Sparsity and Cold Start: Algorithms, Practical Challenges and Applications Chapter · November 2018 DOI: 10.1142/9789813275355_0008 CITATIONS READS 11 432 4 authors: Mehdi Elahi Matthias Braunhofer University of Bergen Microsoft 85 PUBLICATIONS 1,490 CITATIONS 28 PUBLICATIONS 628 CITATIONS SEE PROFILE SEE PROFILE Tural Gurbanov Francesco Ricci ivi.ru Free University of Bozen-Bolzano 9 PUBLICATIONS 47 CITATIONS 284 PUBLICATIONS 12,743 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Music recommender systems View project Create new project "ONE Project" View project All content following this page was uploaded by Mehdi Elahi on 21 March 2019. The user has requested enhancement of the downloaded file. May 24, 2018 18:12 ws-book9x6 Collaborative Recommendations: Algorithms, Practical Challenges and Applications 08preferenceelicitation page 1 Chapter 1 User preference elicitation, rating sparsity and cold start Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov, Francesco Ricci Free University of Bozen - Bolzano, Piazza Domenicani, 3 Italy - 39100, Bozen-Bolzano meelahi,mbraunhofer,tgurbanov,fricci @unibz.it { } 1.1 Abstract A prerequisite for implementing collaborative filtering recommender sys- tems is the availability of users’ preferences data. This data, typically in the form of ratings, is exploited to learn the tastes of the users and to serve them with personalized recommendations. However, there may be a lack of preference data, especially at the initial stage of the operations of a recommender system, i.e., in the Cold Start phase.
    [Show full text]
  • Preference Elicitation by Solving the Cold Start Problem
    International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031 www.ijlret.com || Volume 02 - Issue 05 || May 2016 || PP. 100-107 Preference Elicitation by Solving the Cold Start Problem Jaswanth Kannan, R1, Karthiga, S2, Manivel, S3 1,3Student, 2AssistantProfessor Department of Information Technology, Thiagarajar College of Engineering, Madura Abstract— There is an extensive class of Web applications that involve predicting user responses to options. Such a facility is called a recommendation system. A specific example of recommendation systems is to offer customers a non-line retailer suggestions about what they might like to buy, based on past history of purchases and/ or product searches. Cold start is a potential problem in computer-based information systems which involve a degree of automated data modeling. Specifically, it concerns the issue that the system cannot draw any inferences for users or items about which it has not yet gathered sufficient information. The cold start problem is most prevalent in recommender systems. Typically, are commander system compares the user's profile to some reference characteristics. These characteristics may be from the information item (the content-based approach) or the user's social environment (the collaborative filtering approach). Preference elicitation is a decision support system capable of generating recommendations to a user, thus assisting in decision making. It gives preferences accurately, finds hidden preferences and avoids redundancy. Index Terms — Recommender System, Big Data, Neo4j tool, Graph. I. INTRODUCTION Big data analysis is one of the upcoming disciplines in data mining where the large unstructured data that is very difficult to store and retrieve in an efficient manner.
    [Show full text]
  • Negotiation and Reconciliation of Preferences in a Group Recommender System
    Journal of Information Processing Vol.26 186–200 (Feb. 2018) [DOI: 10.2197/ipsjjip.26.186] Regular Paper Negotiation and Reconciliation of Preferences in a Group Recommender System Jesus´ Omar A´ lvarez Marquez´ 1,a) Jurgen¨ Ziegler1,b) Received: May 24, 2017, Accepted: November 7, 2017 Abstract: This article presents an approach to group recommender systems that focuses its attention on the group’s social interaction during the formulation, discussion and negotiation of the features the item to be jointly selected should possess. Current group recommender techniques are mainly based on aggregating existing user profiles or on a profile of the group as a whole. Our method supports collaborative preference elicitation and negotiation process where desired features have to be chosen individually, but group consensus is needed for them to become active in the item filtering process. Users provide feedback on the selected preferences and change their significance, bringing up new recommendations each time individual settings are modified. The last stage in the decision process is also sup- ported, when users collectively select the final item from the recommendation set. We explored the possible benefits of our approach through the development of three prototypes, each based on a different variant of the approach with adifferent emphasis on private and group-wide preference spaces. They were evaluated with user groups of different size, addressing questions regarding the effectiveness of different information sharing methods and the repercussion of group size in the recommendation process. We compare the different methods and consolidate the findings in an initial model of recommending for group. Keywords: group recommender system, group preference elicitation, negotiation, decision-making ample, when jointly going to a restaurant or to the movies.
    [Show full text]
  • Can Trailers Help to Alleviate Popularity Bias in Choice-Based Preference Elicitation?
    Can Trailers Help to Alleviate Popularity Bias in Choice-Based Preference Elicitation? Mark P. Graus Martijn C. Willemsen Eindhoven University of Technology Eindhoven University of Technology IPO 0.20 IPO 0.17 PB 513, 5600 MB, Eindhoven, Netherlands PB 513, 5600 MB, Eindhoven, Netherlands [email protected] [email protected] ABSTRACT quire them to rely on memory. This can lead to unreliable Previous research showed that choice-based preference elic- feedback [2]. itation can be successfully used to reduce effort during user cold start, resulting in an improved user satisfaction with 1.2 Choice-Based Preference Elicitation the recommender system. However, it has also been shown One way to reduce the effort can be found in choice-based to result in highly popular recommendations. In the present preference elicitation. Where most recommender systems study we investigate if trailers reduce this bias to popular ask users to provide a number of ratings on items (explicit recommendations by informing the user and enticing her feedback), recommender systems applying choice-based pref- to choose less popular movies. In a user study we show erence elicitation ask the user to make a number of choices that users that watched trailers chose relatively less popular (implicit feedback). Using implicit feedback to produce per- movies and how trailers affected the overall user experience sonalized ranking has been shown to provide better fitting with the recommender system. prediction models than using explicit feedback [8]. In recent user studies users of collaborative filtering systems were pro- CCS Concepts vided with choice-based preference elicitation[4, 6].
    [Show full text]