Eliciting Pairwise Preferences in Recommender Systems

Total Page:16

File Type:pdf, Size:1020Kb

Eliciting Pairwise Preferences in Recommender Systems Eliciting Pairwise Preferences in Recommender Systems Saikishore Kalloori, Francesco Ricci and Rosella Gennari Free University of Bozen - Bolzano, Italy Piazza Domenicani 3, I - 39100, Bolzano, Italy [email protected],[email protected],[email protected] ABSTRACT from absolute item evaluations, e.g., user ratings or likes [31]. How- Preference data in the form of ratings or likes for items are widely ever, this type of preferences have few disadvantages, illustrated in used in many Recommender Systems. However, previous research previous literature [5, 22, 23]. For instance, if a user has assigned has shown that even item comparisons, which generate pairwise the highest rating to an item and, subsequently, the user nds that preference data, can be used to model user preferences. Moreover, he prefers another item to the rst one, the user has no choice but pairwise preferences can be eectively combined with ratings to to also give to this new item the highest rating [11]. Moreover, if compute recommendations. In such hybrid approaches, the Rec- most of the items are rated with the largest rating, then it is dicult ommender System requires to elicit both types of preference data to understand which items the user does like the most. from the user. In this work, we aim at identifying how and when to For such reasons, few researchers [5, 11, 22] have developed elicit pairwise preferences, i.e., when this form of user preference recommendation techniques that leverage an alternative way to data is more meaningful for the user to express and more benecial collect user preferences, namely, pairwise comparisons, such as for the system. We conducted an online A/B test and compared a item i is preferred to item j. In these scenarios, users provide their rating-only based system variant with another variant that allows preferences by expressing which item is preferred in a pair (i;j). the user to enter both types of preferences. Our results demonstrate In [24, 25], it was shown that pairwise preferences can be eec- that pairwise preferences are valuable and useful, especially when tively used for training matrix factorization and nearest neighbor the user is focusing on a specic type of items. By incorporating approaches, and ultimately to compute eective recommendations. pairwise preferences, the system can generate beer recommenda- It is worth noting that pairwise preferences naturally arise and tions than a state of the art rating-only based solution. Additionally, are expressed by users (directly or indirectly) in many decision- our results indicate that there seems to be a dependency between making scenarios. Actually, in everyday life, there are situations the user’s personality, the perceived system usability and the sat- where rating alternative options is not the most natural mechanism isfaction for the preference elicitation procedure, which varies if for expressing preferences and making decisions. For instance, we only ratings or a combination of ratings and pairwise preferences do not rate sweaters when we want to buy one. It is more likely that are elicited. we will compare them and purchase the preferred one. However, understanding which pairwise preferences the user should express, CCS CONCEPTS so as to learn her user model and when to acquire these comparisons, is a pivotal issue in designing eective RSs based on this form of •Information systems ! Recommender systems; preference data. KEYWORDS For this reason, in this work, we aim at understanding when eliciting pairwise preferences is meaningful and benecial. We Pairwise Preferences; Ratings; Recommender Systems hypothesize that pairwise preferences are more eective, if com- ACM Reference format: pared with ratings, in situations and scenarios where the user has a Saikishore Kalloori, Francesco Ricci and Rosella Gennari. 2018. Eliciting rather clear objective and is looking for a specic type of items (rec- Pairwise Preferences in Recommender Systems. In Proceedings of Twelh ommendation). For instance, when a user wants to enjoy a beach ACM Conference on Recommender Systems, Vancouver, BC, Canada, October resort along with his family during a weekend, it is more likely 2–7, 2018 (RecSys ’18), 9 pages. that he will choose the best option by comparing the available ones DOI: 10.1145/3240323.3240364 instead of rating them. We focus on such user situations having a specic goal/context, and we model their preferences. Our intuition 1 INTRODUCTION is that in order to make a comparison, the user requires a (set of) Most of the current Recommender Systems (RSs) generate person- criteria to formulate a judgment. Moreover, we also hypothesize alised suggestions by leveraging preference information derived that the items to be compared should not be too dierent; a buyer Permission to make digital or hard copies of all or part of this work for personal or can compare two cars but not a car and a bicycle. In fact, even classroom use is granted without fee provided that copies are not made or distributed the adjective “comparable” means that the compared objects are for prot or commercial advantage and that copies bear this notice and the full citation somewhat similar. on the rst page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permied. To copy otherwise, or We also aim at addressing the issue of which specic items the republish, to post on servers or to redistribute to lists, requires prior specic permission user should compare. In fact, in addition to the issue mentioned and/or a fee. Request permissions from [email protected]. above (i.e., that the compared items should be somewhat similar), RecSys ’18, Vancouver, BC, Canada © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. an additional downside of acquiring user preference information 978-1-4503-5901-6/18/10...$15.00 from pairwise comparison is that the number of possible compar- DOI: 10.1145/3240323.3240364 isons in a set of N items is N 2. Even though it has been shown 329 RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada Saikishore Kalloori, Francesco Ricci and Rosella Gennar that in practice RSs based on pairwise preferences do not require a comprehensive discussion of the obtained results. Finally, we more preference data than systems based on ratings [5], it is still formulate our conclusions and discuss future work. important and critical to identify, for each user, a convenient set of comparisons that she should express. In order to eectively 2 RELATED WORK elicit pairwise preferences, the RS needs a usable GUI and an active 2.1 Pairwise Preferences learning method that can identify which pairs of items the users could and should compare. Pairwise preferences (relative preferences or comparisons) are Hence, in this paper, we develop a specic interaction model, GUI widely used even outside the RS research area, e.g., in decision components, an active learning strategy for pairwise preferences making and marketing. For instance, popular techniques, such as, and a personalized ranking algorithm that uses pairwise preferences Analytic Hierarchy Processing (AHP) [34] or Conjoint Analysis in order to validate the following hypotheses: [37], use relative comparison between product features to under- stand or elicit users interest. In Behavioral Economics, according to (H ) Pairwise preferences can lead to a larger system usability 1 Preference Reversal theory [40], user’s preferences while evaluating compared to ratings. items individually (Separate Evaluation) dier from the preferences (H2) e usage of pairwise preferences can lead to a larger user expressed while comparing items together (Joint Evaluation). Users satisfaction for the preference elicitation process compared tend to express preferences dierently in these two situations [1] to the usage of ratings, when the choice set has been al- and therefore it is important for RSs to analyse the quality of rec- ready reduced. ommendations generated by alternative preference models (e.g., ratings vs. pairwise preferences). Moreover, pairwise comparison (H3) Pairwise preferences can lead to higher RS accuracy and are shown to be useful in obtaining reliable teacher assessments quality compared to ratings when the user has a clear [19] and peer assessment of undergraduate studies [21]. decision making objective. In previous research, it has been already shown that pairwise Modeling user preferences in the form of pairwise preferences and preference judgments are also faster than ratings to express, and identifying which situation is best suited for eliciting pairwise pref- users prefer to provide their preferences in this form [12, 22]. Ad- erences has not been explored in RSs so far. erefore, in order to ditionally, the authors of [22] showed that pairwise preferences are validate our research hypotheses, we have implemented techniques more stable than ratings. More in general, some research works in for pairwise preference elicitation and recommendation generation RSs, instead of modeling user preferences using ratings, tried mod- in a mobile RS, called South Tyrol Suggests (STS). STS recommends eling user preferences in other forms such as group based elicitation interesting Places of Interests (POIs) in South Tyrol region in Italy approach using groups of items [32, 39] and choice based prefer- [7]. STS is an Android-based RS that provides users with context- ence elicitation [18]. ese approaches have shown to yield good aware recommendations. We have implemented two RSs variants, performance in terms of reducing user eort, time and improving using STS, and conducted a live user study. One variant is based user satisfaction when compared to ratings. on ratings only while the other employs our newly developed algo- Focussing on recommendation algorithms, while there are nu- rithms, gathers user preferences in the form of pairwise preferences merous RSs that generate recommendations by using user pref- and makes recommendations using them together with a possibly erences in the form of ratings, recently, few authors developed pre-existent rating data set.
Recommended publications
  • Learning Preferences of New Users in Recommender Systems: an Information Theoretic Approach
    Learning Preferences of New Users in Recommender Systems: An Information Theoretic Approach Al Mamunur Rashid, George Karypis, and John Riedl Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN-55455 {arashid, karypis, riedl}@cs.umn.edu Abstract. Recommender systems are a nice tool to help nd items of interest from an overwhelming number of available items. Collaborative Filtering (CF), the best known technology for recommender systems, is based on the idea that a set of like-minded users can help each other nd useful information. A new user poses a challenge to CF recommenders, since the system has no knowledge about the preferences of the new user, and therefore cannot provide personalized recommendations. A new user preference elicitation strategy needs to ensure that the user does not a) abandon a lengthy signup process, and b) lose interest in returning to the site due to the low quality of initial recommendations. We extend the work of [23] in this paper by incrementally developing a set of in- formation theoretic strategies for the new user problem. We propose an oine simulation framework, and evaluate the strategies through exten- sive oine simulations and an online experiment with real users of a live recommender system. 1 Introduction Collaborative Filtering (CF)-based recommender systems generate recommen- dations for a user by utilizing the opinions of other users with similar taste. These recommender systems are a nice tool bringing mutual benets to both users and the operators of the sites with too much information. Users benet as they are able to nd items of interest from an unmanageable number of available items.
    [Show full text]
  • Preference Elicitation Techniques for Group Recommender Systems ⇑ Inma Garcia , Sergio Pajares, Laura Sebastia, Eva Onaindia
    Information Sciences xxx (2011) xxx–xxx Contents lists available at SciVerse ScienceDirect Information Sciences journal homepage: www.elsevier.com/locate/ins Preference elicitation techniques for group recommender systems ⇑ Inma Garcia , Sergio Pajares, Laura Sebastia, Eva Onaindia Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain article info abstract Article history: A key issue in group recommendation is how to combine the individual preferences of dif- Received 31 January 2011 ferent users that form a group and elicit a profile that accurately reflects the tastes of all Received in revised form 18 October 2011 members in the group. Most Group Recommender Systems (GRSs) make use of some sort Accepted 26 November 2011 of method for aggregating the preference models of individual users to elicit a recommen- Available online xxxx dation that is satisfactory for the whole group. In general, most GRSs offer good results, but each of them have only been tested in one application domain. Keywords: This paper describes a domain-independent GRS that has been used in two different Group recommender systems application domains. In order to create the group preference model, we select two tech- Group profile Preference elicitation niques that are widely used in other GRSs and we compare them with two novel tech- niques. Our aim is to come up with a model that weighs the preferences of all the individuals to the same extent in such a way that no member in the group is particularly satisfied or dissatisfied with the final recommendations. Ó 2011 Elsevier Inc. All rights reserved. 1. Introduction A Recommender System (RS) [52] is a widely used mechanism for providing advice to people in order to select a set of items, activities or any other kind of product.
    [Show full text]
  • Diverse User Preference Elicitation with Multi-Armed Bandits
    Session 3: Recommender Systems WSDM ’21, March 8–12, 2021, Virtual Event, Israel Diverse User Preference Elicitation with Multi-Armed Bandits Javier Parapar∗ Filip Radlinski [email protected] [email protected] Universidade da Coruña Google Research A Coruña, Spain London, United Kingdom ABSTRACT 1 INTRODUCTION Personalized recommender systems rely on knowledge of user pref- Recommender Systems (RSs) [46] have become ubiquitous for rec- erences to produce recommendations. While those preferences are ommending movies [19], music [54], books [57], news [34], and in often obtained from past user interactions with the recommenda- numerous other domains. Their goal is to help users more quickly tion catalog, in some situations such observations are insufficient find relevant items in vast catalogues. or unavailable. The most widely studied case is with new users, One of the most common approaches is Collaborative Filtering although other similar situations arise where explicit preference (CF), which depends on rich user preference information to discover elicitation is valuable. At the same time, a seemingly disparate relationships between items, and in turn allows user-user and item- challenge is that there is a well known popularity bias in many al- item similarity to be estimated. Given a user profile, items of interest gorithmic approaches to recommender systems. The most common to similar users can then be suggested. Preferences can be explicit way of addressing this challenge is diversification, which tends to (for example, ratings on books, or likes of posts) or implicit (for be applied to the output of a recommender algorithm, prior to items example, the history of songs a user has listened to, or films the user being presented to users.
    [Show full text]
  • Leveraging Collective Intelligence in Recommender System
    Leveraging Collective Intelligence in Recommender System A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Shuo Chang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Loren G Terveen August, 2016 c Shuo Chang 2016 ALL RIGHTS RESERVED Acknowledgements Through the five years of my graduate school, I have received numerous support from my family, friends and colleagues. This thesis would not have been possible without them. First and foremost, I thank my advisor Dr. Loren Terveen for sharing his wisdom and helping me to grow. He gave me the freedom to pursue my research interest and challenge me to be better. During difficult times, he consuls me with his kindness and patience. I am forever grateful for what I have learned from him during this five years. I would also like to thank my committee members | Dr. Joseph Konstan, Dr. George Karypis and Dr. Yuqing Ren | for providing valuable feedback. I thank Ed Chi, Peng Dai and Elizabeth Churchill for giving me internship oppor- tunities and being awesome mentors. During the internships, I was fortunate to receive guidance and support from Atish Das Sarma, Lichan Hong, Jilin Chen and Zhiyuan Cheng. I am very thankful to be a member of the GroupLens research lab, which will always have a special place in my heart. I'd like to thank Dr. John Riedl for welcoming me to the GroupLens family. I truly enjoyed working and being friend with Max Harper, Vikas Kumar, Daniel Kluver, Tien Nguyen, Hannah Miller, Jaccob Thebault-Spieker, Aditya Pal, Isaac Johnson, Qian Zhao, Dr.
    [Show full text]
  • Preference Elicitation and Negotiation in a Group Recommender System Jesús Álvarez Márquez, Jurgen Ziegler
    Preference Elicitation and Negotiation in a Group Recommender System Jesús Álvarez Márquez, Jurgen Ziegler To cite this version: Jesús Álvarez Márquez, Jurgen Ziegler. Preference Elicitation and Negotiation in a Group Recom- mender System. 15th Human-Computer Interaction (INTERACT), Sep 2015, Bamberg, Germany. pp.20-37, 10.1007/978-3-319-22668-2_2. hal-01599849 HAL Id: hal-01599849 https://hal.inria.fr/hal-01599849 Submitted on 2 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Preference Elicitation and Negotiation in a Group Recommender System Jesús Omar Álvarez Márquez1, Jürgen Ziegler1 1University of Duisburg-Essen, Duisburg, Germany {jesus.alvarez-marquez, juergen.ziegler}@uni-due.de Abstract. We present a novel approach to group recommender systems that better takes into account the social interaction in a group when formulating, dis- cussing and negotiating the features of the item to be jointly selected. Our ap- proach provides discussion support in a collaborative preference elicitation and negotiation process. Individual preferences are continuously aggregated and immediate feedback of the resulting recommendations is provided. We also support the last stage in the decision process when users collectively select the final item from the recommendation set.
    [Show full text]
  • Eliciting Worker Preference for Task Completion
    Eliciting Worker Preference for Task Completion Mohammad Esfandiari #1, Senjuti Basu Roy #1, Sihem Amer-Yahia ∗2 # NJIT, USA 1 [email protected], [email protected] ∗ Univ. Grenoble Alpes, CNRS, LIG, France 2 [email protected] Abstract—Current crowdsourcing platforms provide little sup- In this paper, our objective is to design a framework that port for worker feedback. Workers are sometimes invited to advocates for explicit preference elicitation from workers to post free text describing their experience and preferences in develop a model that guides task completion. That differs completing tasks. They can also use forums such as Turker Nation1 to exchange preferences on tasks and requesters. In fact, from developing solutions for task assignment. The objective crowdsourcing platforms rely heavily on observing workers and behind preference elicitation is to use obtained feedback to inferring their preferences implicitly. In this work, we believe effectively maintain a Worker Model. Given a task t that a that asking workers to indicate their preferences explicitly improve worker w undertakes (either via self-appointment or via an their experience in task completion and hence, the quality of their assignment algorithm), there could be one of two possible contributions. Explicit elicitation can indeed help to build more accurate worker models for task completion that captures the outcomes : 1. the task is completed successfully. 2. otherwise. evolving nature of worker preferences. We design a worker model In reality, worker preferences are latent, i.e., they are to whose accuracy is improved iteratively by requesting preferences be inferred through task factors and task outcomes.
    [Show full text]
  • Towards Conversational Recommender Systems
    Towards Conversational Recommender Systems Konstantina Christakopoulou⇤ Filip Radlinski, Katja Hofmann University of Minnesota Microsoft United States Cambridge, UK [email protected] {filiprad, katja.hofmann}@microsoft.com ABSTRACT users by the characteristics of the items they like or dislike. People often ask others for restaurant recommendations as a We note that neither model represents how real people make way to discover new dining experiences. This makes restau- recommendations, particularly in a cold-start setting where rant recommendation an exciting scenario for recommender the person making a recommendation does not know a lot systems and has led to substantial research in this area. about the person asking for one. However, most such systems behave very di↵erently from Consider what would happen if a conference attendee in a human when asked for a recommendation. The goal of your home town, whom you have never met before, asked this paper is to begin to reduce this gap. for a recommendation on where to eat dinner today. Most In particular, humans can quickly establish preferences likely, you would start with one or two clarifying questions, when asked to make a recommendation for someone they do perhaps whether the person likes seafood, or whether they not know. We address this cold-start recommendation prob- have a car. These questions would depend on the context; lem in an online learning setting. We develop a preference for instance if there are great restaurants around the corner, elicitation framework to identify which questions to ask a then whether they have a car would be irrelevant. new user to quickly learn their preferences.
    [Show full text]
  • Mining Large Streams of User Data for Personalized Recommendations
    Mining Large Streams of User Data for Personalized Recommendations Xavier Amatriain Netflix xamatriain@netflix.com ABSTRACT solutions - think, for example, of ranking metrics such as Normalized Discounted Cumulative Gain (NDCG) or other The Netflix Prize put the spotlight on the use of data min- information retrieval ones such as recall or area under the ing and machine learning methods for predicting user pref- curve (AUC). Beyond the optimization of a given offline met- erences. Many lessons came out of the competition. But ric, what we are really pursuing is the impact of a method on since then, Recommender Systems have evolved. This evo- the business. Is there a way to relate the goodness of an algo- lution has been driven by the greater availability of different rithm to more customer-facing metrics such as click-through kinds of user data in industry and the interest that the area rate (CTR) or retention? I will describe our approach to in- has drawn among the research community. The goal of this novation called \Consumer Data Science" in section 3.1. paper is to give an up-to-date overview of the use of data mining approaches for personalization and recommendation. But before we understand the reasons for all these effects, Using Netflix personalization as a motivating use case, I will and before we are ready to embrace the open research ques- describe the use of different kinds of data and machine learn- tions in the area of personalization described in Section 5, ing techniques. we need to understand some of the basic techniques that enable the different approaches.
    [Show full text]
  • User Preference Elicitation, Rating Sparsity and Cold Start: Algorithms, Practical Challenges and Applications
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329398751 User Preference Elicitation, Rating Sparsity and Cold Start: Algorithms, Practical Challenges and Applications Chapter · November 2018 DOI: 10.1142/9789813275355_0008 CITATIONS READS 11 432 4 authors: Mehdi Elahi Matthias Braunhofer University of Bergen Microsoft 85 PUBLICATIONS 1,490 CITATIONS 28 PUBLICATIONS 628 CITATIONS SEE PROFILE SEE PROFILE Tural Gurbanov Francesco Ricci ivi.ru Free University of Bozen-Bolzano 9 PUBLICATIONS 47 CITATIONS 284 PUBLICATIONS 12,743 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Music recommender systems View project Create new project "ONE Project" View project All content following this page was uploaded by Mehdi Elahi on 21 March 2019. The user has requested enhancement of the downloaded file. May 24, 2018 18:12 ws-book9x6 Collaborative Recommendations: Algorithms, Practical Challenges and Applications 08preferenceelicitation page 1 Chapter 1 User preference elicitation, rating sparsity and cold start Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov, Francesco Ricci Free University of Bozen - Bolzano, Piazza Domenicani, 3 Italy - 39100, Bozen-Bolzano meelahi,mbraunhofer,tgurbanov,fricci @unibz.it { } 1.1 Abstract A prerequisite for implementing collaborative filtering recommender sys- tems is the availability of users’ preferences data. This data, typically in the form of ratings, is exploited to learn the tastes of the users and to serve them with personalized recommendations. However, there may be a lack of preference data, especially at the initial stage of the operations of a recommender system, i.e., in the Cold Start phase.
    [Show full text]
  • Preference Elicitation by Solving the Cold Start Problem
    International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031 www.ijlret.com || Volume 02 - Issue 05 || May 2016 || PP. 100-107 Preference Elicitation by Solving the Cold Start Problem Jaswanth Kannan, R1, Karthiga, S2, Manivel, S3 1,3Student, 2AssistantProfessor Department of Information Technology, Thiagarajar College of Engineering, Madura Abstract— There is an extensive class of Web applications that involve predicting user responses to options. Such a facility is called a recommendation system. A specific example of recommendation systems is to offer customers a non-line retailer suggestions about what they might like to buy, based on past history of purchases and/ or product searches. Cold start is a potential problem in computer-based information systems which involve a degree of automated data modeling. Specifically, it concerns the issue that the system cannot draw any inferences for users or items about which it has not yet gathered sufficient information. The cold start problem is most prevalent in recommender systems. Typically, are commander system compares the user's profile to some reference characteristics. These characteristics may be from the information item (the content-based approach) or the user's social environment (the collaborative filtering approach). Preference elicitation is a decision support system capable of generating recommendations to a user, thus assisting in decision making. It gives preferences accurately, finds hidden preferences and avoids redundancy. Index Terms — Recommender System, Big Data, Neo4j tool, Graph. I. INTRODUCTION Big data analysis is one of the upcoming disciplines in data mining where the large unstructured data that is very difficult to store and retrieve in an efficient manner.
    [Show full text]
  • Negotiation and Reconciliation of Preferences in a Group Recommender System
    Journal of Information Processing Vol.26 186–200 (Feb. 2018) [DOI: 10.2197/ipsjjip.26.186] Regular Paper Negotiation and Reconciliation of Preferences in a Group Recommender System Jesus´ Omar A´ lvarez Marquez´ 1,a) Jurgen¨ Ziegler1,b) Received: May 24, 2017, Accepted: November 7, 2017 Abstract: This article presents an approach to group recommender systems that focuses its attention on the group’s social interaction during the formulation, discussion and negotiation of the features the item to be jointly selected should possess. Current group recommender techniques are mainly based on aggregating existing user profiles or on a profile of the group as a whole. Our method supports collaborative preference elicitation and negotiation process where desired features have to be chosen individually, but group consensus is needed for them to become active in the item filtering process. Users provide feedback on the selected preferences and change their significance, bringing up new recommendations each time individual settings are modified. The last stage in the decision process is also sup- ported, when users collectively select the final item from the recommendation set. We explored the possible benefits of our approach through the development of three prototypes, each based on a different variant of the approach with adifferent emphasis on private and group-wide preference spaces. They were evaluated with user groups of different size, addressing questions regarding the effectiveness of different information sharing methods and the repercussion of group size in the recommendation process. We compare the different methods and consolidate the findings in an initial model of recommending for group. Keywords: group recommender system, group preference elicitation, negotiation, decision-making ample, when jointly going to a restaurant or to the movies.
    [Show full text]
  • Can Trailers Help to Alleviate Popularity Bias in Choice-Based Preference Elicitation?
    Can Trailers Help to Alleviate Popularity Bias in Choice-Based Preference Elicitation? Mark P. Graus Martijn C. Willemsen Eindhoven University of Technology Eindhoven University of Technology IPO 0.20 IPO 0.17 PB 513, 5600 MB, Eindhoven, Netherlands PB 513, 5600 MB, Eindhoven, Netherlands [email protected] [email protected] ABSTRACT quire them to rely on memory. This can lead to unreliable Previous research showed that choice-based preference elic- feedback [2]. itation can be successfully used to reduce effort during user cold start, resulting in an improved user satisfaction with 1.2 Choice-Based Preference Elicitation the recommender system. However, it has also been shown One way to reduce the effort can be found in choice-based to result in highly popular recommendations. In the present preference elicitation. Where most recommender systems study we investigate if trailers reduce this bias to popular ask users to provide a number of ratings on items (explicit recommendations by informing the user and enticing her feedback), recommender systems applying choice-based pref- to choose less popular movies. In a user study we show erence elicitation ask the user to make a number of choices that users that watched trailers chose relatively less popular (implicit feedback). Using implicit feedback to produce per- movies and how trailers affected the overall user experience sonalized ranking has been shown to provide better fitting with the recommender system. prediction models than using explicit feedback [8]. In recent user studies users of collaborative filtering systems were pro- CCS Concepts vided with choice-based preference elicitation[4, 6].
    [Show full text]