Linear Dependence and Linear Independence 267

Total Page:16

File Type:pdf, Size:1020Kb

Linear Dependence and Linear Independence 267 i i “main” 2007/2/16 page 267 i i 4.5 Linear Dependence and Linear Independence 267 3 32. {v1, v2}, where v1, v2 are collinear vectors in R . 34. Prove that 33. Prove that if S and S are subsets of a vector space V span{v1, v2, v3}=span{v1, v2} such that S is a subset of S, then span(S) is a subset of span(S). if and only if v3 can be written as a linear combination of v1 and v2. 4.5 Linear Dependence and Linear Independence As indicated in the previous section, in analyzing a vector space we will be interested in determining a spanning set. The reader has perhaps already noticed that a vector space V can have many such spanning sets. Example 4.5.1 Observe that {(1, 0), (0, 1)}, {(1, 0), (1, 1)}, and {(1, 0), (0, 1), (1, 2)} are all spanning sets for R2. As another illustration, two different spanning sets for V = M2(R) were given in Exam- ple 4.4.5 and the remark that followed. Given the abundance of spanning sets available for a given vector space V , we are faced with a natural question: Is there a “best class of” spanning sets to use? The answer, to a large degree, is “yes”. For instance, in Exam- ple 4.5.1, the spanning set {(1, 0), (0, 1), (1, 2)} contains an “extra” vector, (1, 2), which seems to be unnecessary for spanning R2, since {(1, 0), (0, 1)} is already a spanning set. In some sense, {(1, 0), (0, 1)} is a more efficient spanning set. It is what we call a mini- mal spanning set, since it contains the minimum number of vectors needed to span the vector space.3 But how will we know if we have found a minimal spanning set (assuming one exists)? Returning to the example above, we have seen that span{(1, 0), (0, 1)}=span{(1, 0), (0, 1), (1, 2)}=R2. Observe that the vector (1, 2) is already a linear combination of (1, 0) and (0, 1), and therefore it does not add any new vectors to the linear span of {(1, 0), (0, 1)}. As a second example, consider the vectors v1 = (1, 1, 1), v2 = (3, −2, 1), and v3 = 4v1 + v2 = (7, 2, 5). It is easily verified that det([v1, v2, v3]) = 0. Consequently, the three vectors lie in a plane (see Figure 4.5.1) and therefore, since they are not collinear, the linear span of these three vectors is the whole of this plane. Furthermore, the same plane is generated if we consider the linear span of v1 and v2 alone. As in the previous example, the reason that v3 does not add any new vectors to the linear span of {v1, v2} is that it is already a linear combination of v1 and v2. It is not possible, however, to generate all vectors in the plane by taking linear combinations of just one vector, as we could generate only a line lying in the plane in that case. Consequently, {v1, v2} is a minimal spanning set for the subspace of R3 consisting of all points lying on the plane. As a final example, recall from Example 1.2.16 that the solution space to the differ- ential equation y + y = 0 3Since a single (nonzero) vector in R2 spans only the line through the origin along which it points, it cannot span all of R2; hence, the minimum number of vectors required to span R2 is 2. i i i i i i “main” 2007/2/16 page 268 i i 268 CHAPTER 4 Vector Spaces z ϭ ϩ (7, 2, 5) v3 4v1 v2 (3,Ϫ2, 1) v v1 2 (1, 1, 1) y (3,Ϫ2, 0) (1, 1, 0) x (7, 2, 0) Figure 4.5.1: v3 = 4v1 + v2 lies in the plane through the origin containing v1 and v2, and so, span{v1, v2, v3}=span{v1, v2}. can be written as span{y1,y2}, where y1(x) = cos x and y2(x) = sin x.However,ifwe let y3(x) = 3 cos x − 2sinx, for instance, then {y1,y2,y3} is also a spanning set for the solution space of the differential equation, since span{y1,y2,y3}={c1 cos x + c2 sin x + c3(3 cos x − 2sinx) : c1,c2,c3 ∈ R} ={(c1 + 3c3) cos x + (c2 − 2c3) sin x : c1,c2,c3 ∈ R} ={d1 cos x + d2 sin x : d1,d2 ∈ R} = span{y1,y2}. The reason that {y1,y2,y3} is not a minimal spanning set for the solution space is that y3 is a linear combination of y1 and y2, and therefore, as we have just shown, it does not add any new vectors to the linear span of {cos x,sin x}. More generally, it is not too difficult to extend the argument used in the preceding examples to establish the following general result. Theorem 4.5.2 Let {v1, v2,...,vk} be a set of at least two vectors in a vector space V . If one of the vectors in the set is a linear combination of the other vectors in the set, then that vector can be deleted from the given set of vectors and the linear span of the resulting set of vectors will be the same as the linear span of {v1, v2,...,vk}. Proof The proof of this result is left for the exercises (Problem 48). For instance, if v1 is a linear combination of v2, v3,...,vk, then Theorem 4.5.2 says that span{v1, v2,...,vk}=span{v2, v3,...,vk}. In this case, the set {v1, v2,...,vk} is not a minimal spanning set. To determine a minimal spanning set, the problem we face in view of Theorem 4.5.2 is that of determining when a vector in {v1, v2,...,vk} can be expressed as a linear combination of the remaining vectors in the set. The correct formulation for solving this problem requires the concepts of linear dependence and linear independence, which we are now ready to introduce. First we consider linear dependence. i i i i i i “main” 2007/2/16 page 269 i i 4.5 Linear Dependence and Linear Independence 269 DEFINITION 4.5.3 A finite nonempty set of vectors {v1, v2,...,vk} in a vector space V issaidtobe linearly dependent if there exist scalars c1, c2, ..., ck, not all zero, such that c1v1 + c2v2 +···+ckvk = 0. Such a nontrivial linear combination of vectors is sometimes referred to as a linear dependency among the vectors v1, v2,...,vk. A set of vectors that is not linearly dependent is called linearly independent. This can be stated mathematically as follows: DEFINITION 4.5.4 A finite, nonempty set of vectors {v1, v2,...,vk} in a vector space V is said to be linearly independent if the only values of the scalars c1,c2,...,ck for which c1v1 + c2v2 +···+ckvk = 0 are c1 = c2 =···=ck = 0. Remarks 1. It follows immediately from the preceding two definitions that a nonempty set of vectors in a vector space V is linearly independent if and only if it is not linearly dependent. 2. If {v1, v2,...,vk} is a linearly independent set of vectors, we sometimes informally say that the vectors v1, v2,...,vk are themselves linearly independent. The same remark applies to the linearly dependent condition as well. Consider the simple case of a set containing a single vector v.Ifv = 0, then {v} is linearly dependent, since for any nonzero scalar c1, c10 = 0. On the other hand, if v = 0, then the only value of the scalar c1 for which c1v = 0 is c1 = 0. Consequently, {v} is linearly independent. We can therefore state the next theorem. Theorem 4.5.5 A set consisting of a single vector v in a vector space V is linearly dependent if and only if v = 0. Therefore, any set consisting of a single nonzero vector is linearly independent. We next establish that linear dependence of a set containing at least two vectors is equivalent to the property that we are interested in—namely, that at least one vector in the set can be expressed as a linear combination of the remaining vectors in the set. i i i i i i “main” 2007/2/16 page 270 i i 270 CHAPTER 4 Vector Spaces Theorem 4.5.6 Let {v1, v2,...,vk} be a set of at least two vectors in a vector space V . Then {v1, v2,...,vk} is linearly dependent if and only if at least one of the vectors in the set can be expressed as a linear combination of the others. Proof If {v1, v2,...,vk} is linearly dependent, then according to Definition 4.5.3, there exist scalars c1,c2,...,ck, not all zero, such that c1v1 + c2v2 +···+ckvk = 0. Suppose that ci = 0. Then we can express vi as a linear combination of the other vectors as follows: 1 vi =− (c1v1 + c2v2 +···+ci−1vi−1 + ci+1vi+1 +···+ckvk). ci Conversely, suppose that one of the vectors, say, vj , can be expressed as a linear combi- nation of the remaining vectors. That is, vj = c1v1 + c2v2 +···+cj−1vj−1 + cj+1vj+1 +···+ckvk. Adding (−1)vj to both sides of this equation yields c1v1 + c2v2 +···+cj−1vj−1 − vj + cj+1vj+1 +···+ckvk = 0. Since the coefficient of vj is −1 = 0, the set of vectors {v1, v2,...,vk} is linearly dependent. As far as the minimal-spanning-set idea is concerned, Theorems 4.5.6 and 4.5.2 tell y us that a linearly dependent spanning set for a (nontrivial) vector space V cannot be a minimal spanning set.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • HILBERT SPACE GEOMETRY Definition: a Vector Space Over Is a Set V (Whose Elements Are Called Vectors) Together with a Binary Operation
    HILBERT SPACE GEOMETRY Definition: A vector space over is a set V (whose elements are called vectors) together with a binary operation +:V×V→V, which is called vector addition, and an external binary operation ⋅: ×V→V, which is called scalar multiplication, such that (i) (V,+) is a commutative group (whose neutral element is called zero vector) and (ii) for all λ,µ∈ , x,y∈V: λ(µx)=(λµ)x, 1 x=x, λ(x+y)=(λx)+(λy), (λ+µ)x=(λx)+(µx), where the image of (x,y)∈V×V under + is written as x+y and the image of (λ,x)∈ ×V under ⋅ is written as λx or as λ⋅x. Exercise: Show that the set 2 together with vector addition and scalar multiplication defined by x y x + y 1 + 1 = 1 1 + x 2 y2 x 2 y2 x λx and λ 1 = 1 , λ x 2 x 2 respectively, is a vector space. 1 Remark: Usually we do not distinguish strictly between a vector space (V,+,⋅) and the set of its vectors V. For example, in the next definition V will first denote the vector space and then the set of its vectors. Definition: If V is a vector space and M⊆V, then the set of all linear combinations of elements of M is called linear hull or linear span of M. It is denoted by span(M). By convention, span(∅)={0}. Proposition: If V is a vector space, then the linear hull of any subset M of V (together with the restriction of the vector addition to M×M and the restriction of the scalar multiplication to ×M) is also a vector space.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Linear Algebra for Dummies
    Linear Algebra for Dummies Jorge A. Menendez October 6, 2017 Contents 1 Matrices and Vectors1 2 Matrix Multiplication2 3 Matrix Inverse, Pseudo-inverse4 4 Outer products 5 5 Inner Products 5 6 Example: Linear Regression7 7 Eigenstuff 8 8 Example: Covariance Matrices 11 9 Example: PCA 12 10 Useful resources 12 1 Matrices and Vectors An m × n matrix is simply an array of numbers: 2 3 a11 a12 : : : a1n 6 a21 a22 : : : a2n 7 A = 6 7 6 . 7 4 . 5 am1 am2 : : : amn where we define the indexing Aij = aij to designate the component in the ith row and jth column of A. The transpose of a matrix is obtained by flipping the rows with the columns: 2 3 a11 a21 : : : an1 6 a12 a22 : : : an2 7 AT = 6 7 6 . 7 4 . 5 a1m a2m : : : anm T which evidently is now an n × m matrix, with components Aij = Aji = aji. In other words, the transpose is obtained by simply flipping the row and column indeces. One particularly important matrix is called the identity matrix, which is composed of 1’s on the diagonal and 0’s everywhere else: 21 0 ::: 03 60 1 ::: 07 6 7 6. .. .7 4. .5 0 0 ::: 1 1 It is called the identity matrix because the product of any matrix with the identity matrix is identical to itself: AI = A In other words, I is the equivalent of the number 1 for matrices. For our purposes, a vector can simply be thought of as a matrix with one column1: 2 3 a1 6a2 7 a = 6 7 6 .
    [Show full text]
  • Does Geometric Algebra Provide a Loophole to Bell's Theorem?
    Discussion Does Geometric Algebra provide a loophole to Bell’s Theorem? Richard David Gill 1 1 Leiden University, Faculty of Science, Mathematical Institute; [email protected] Version October 30, 2019 submitted to Entropy Abstract: Geometric Algebra, championed by David Hestenes as a universal language for physics, was used as a framework for the quantum mechanics of interacting qubits by Chris Doran, Anthony Lasenby and others. Independently of this, Joy Christian in 2007 claimed to have refuted Bell’s theorem with a local realistic model of the singlet correlations by taking account of the geometry of space as expressed through Geometric Algebra. A series of papers culminated in a book Christian (2014). The present paper first explores Geometric Algebra as a tool for quantum information and explains why it did not live up to its early promise. In summary, whereas the mapping between 3D geometry and the mathematics of one qubit is already familiar, Doran and Lasenby’s ingenious extension to a system of entangled qubits does not yield new insight but just reproduces standard QI computations in a clumsy way. The tensor product of two Clifford algebras is not a Clifford algebra. The dimension is too large, an ad hoc fix is needed, several are possible. I further analyse two of Christian’s earliest, shortest, least technical, and most accessible works (Christian 2007, 2011), exposing conceptual and algebraic errors. Since 2015, when the first version of this paper was posted to arXiv, Christian has published ambitious extensions of his theory in RSOS (Royal Society - Open Source), arXiv:1806.02392, and in IEEE Access, arXiv:1405.2355.
    [Show full text]
  • Two-State Systems
    1 TWO-STATE SYSTEMS Introduction. Relative to some/any discretely indexed orthonormal basis |n) | ∂ | the abstract Schr¨odinger equation H ψ)=i ∂t ψ) can be represented | | | ∂ | (m H n)(n ψ)=i ∂t(m ψ) n ∂ which can be notated Hmnψn = i ∂tψm n H | ∂ | or again ψ = i ∂t ψ We found it to be the fundamental commutation relation [x, p]=i I which forced the matrices/vectors thus encountered to be ∞-dimensional. If we are willing • to live without continuous spectra (therefore without x) • to live without analogs/implications of the fundamental commutator then it becomes possible to contemplate “toy quantum theories” in which all matrices/vectors are finite-dimensional. One loses some physics, it need hardly be said, but surprisingly much of genuine physical interest does survive. And one gains the advantage of sharpened analytical power: “finite-dimensional quantum mechanics” provides a methodological laboratory in which, not infrequently, the essentials of complicated computational procedures can be exposed with closed-form transparency. Finally, the toy theory serves to identify some unanticipated formal links—permitting ideas to flow back and forth— between quantum mechanics and other branches of physics. Here we will carry the technique to the limit: we will look to “2-dimensional quantum mechanics.” The theory preserves the linearity that dominates the full-blown theory, and is of the least-possible size in which it is possible for the effects of non-commutivity to become manifest. 2 Quantum theory of 2-state systems We have seen that quantum mechanics can be portrayed as a theory in which • states are represented by self-adjoint linear operators ρ ; • motion is generated by self-adjoint linear operators H; • measurement devices are represented by self-adjoint linear operators A.
    [Show full text]
  • Math 2331 – Linear Algebra 6.2 Orthogonal Sets
    6.2 Orthogonal Sets Math 2331 { Linear Algebra 6.2 Orthogonal Sets Jiwen He Department of Mathematics, University of Houston [email protected] math.uh.edu/∼jiwenhe/math2331 Jiwen He, University of Houston Math 2331, Linear Algebra 1 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix 6.2 Orthogonal Sets Orthogonal Sets: Examples Orthogonal Sets: Theorem Orthogonal Basis: Examples Orthogonal Basis: Theorem Orthogonal Projections Orthonormal Sets Orthonormal Matrix: Examples Orthonormal Matrix: Theorems Jiwen He, University of Houston Math 2331, Linear Algebra 2 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets Orthogonal Sets n A set of vectors fu1; u2;:::; upg in R is called an orthogonal set if ui · uj = 0 whenever i 6= j. Example 82 3 2 3 2 39 < 1 1 0 = Is 4 −1 5 ; 4 1 5 ; 4 0 5 an orthogonal set? : 0 0 1 ; Solution: Label the vectors u1; u2; and u3 respectively. Then u1 · u2 = u1 · u3 = u2 · u3 = Therefore, fu1; u2; u3g is an orthogonal set. Jiwen He, University of Houston Math 2331, Linear Algebra 3 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets: Theorem Theorem (4) Suppose S = fu1; u2;:::; upg is an orthogonal set of nonzero n vectors in R and W =spanfu1; u2;:::; upg. Then S is a linearly independent set and is therefore a basis for W . Partial Proof: Suppose c1u1 + c2u2 + ··· + cpup = 0 (c1u1 + c2u2 + ··· + cpup) · = 0· (c1u1) · u1 + (c2u2) · u1 + ··· + (cpup) · u1 = 0 c1 (u1 · u1) + c2 (u2 · u1) + ··· + cp (up · u1) = 0 c1 (u1 · u1) = 0 Since u1 6= 0, u1 · u1 > 0 which means c1 = : In a similar manner, c2,:::,cp can be shown to by all 0.
    [Show full text]
  • Spanning Sets the Only Algebraic Operations That Are Defined in a Vector Space V Are Those of Addition and Scalar Multiplication
    i i “main” 2007/2/16 page 258 i i 258 CHAPTER 4 Vector Spaces 23. Show that the set of all solutions to the nonhomoge- and let neous differential equation S1 + S2 = {v ∈ V : y + a1y + a2y = F(x), v = x + y for some x ∈ S1 and y ∈ S2} . where F(x) is nonzero on an interval I, is not a sub- 2 space of C (I). (a) Show that, in general, S1 ∪ S2 is not a subspace of V . 24. Let S1 and S2 be subspaces of a vector space V . Let (b) Show that S1 ∩ S2 is a subspace of V . S ∪ S ={v ∈ V : v ∈ S or v ∈ S }, 1 2 1 2 (c) Show that S1 + S2 is a subspace of V . S1 ∩ S2 ={v ∈ V : v ∈ S1 and v ∈ S2}, 4.4 Spanning Sets The only algebraic operations that are defined in a vector space V are those of addition and scalar multiplication. Consequently, the most general way in which we can combine the vectors v1, v2,...,vk in V is c1v1 + c2v2 +···+ckvk, (4.4.1) where c1,c2,...,ck are scalars. An expression of the form (4.4.1) is called a linear combination of v1, v2,...,vk. Since V is closed under addition and scalar multiplica- tion, it follows that the foregoing linear combination is itself a vector in V . One of the questions we wish to answer is whether every vector in a vector space can be obtained by taking linear combinations of a finite set of vectors. The following terminology is used in the case when the answer to this question is affirmative: DEFINITION 4.4.1 If every vector in a vector space V can be written as a linear combination of v1, v2, ..., vk, we say that V is spanned or generated by v1, v2, ..., vk and call the set of vectors {v1, v2,...,vk} a spanning set for V .
    [Show full text]
  • Math 22 – Linear Algebra and Its Applications
    Math 22 – Linear Algebra and its applications - Lecture 25 - Instructor: Bjoern Muetzel GENERAL INFORMATION ▪ Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229 Tutorial: Tu, Th, Sun 7-9 pm in KH 105 ▪ Homework 8: due Wednesday at 4 pm outside KH 008. There is only Section B,C and D. 5 Eigenvalues and Eigenvectors 5.1 EIGENVECTORS AND EIGENVALUES Summary: Given a linear transformation 푇: ℝ푛 → ℝ푛, then there is always a good basis on which the transformation has a very simple form. To find this basis we have to find the eigenvalues of T. GEOMETRIC INTERPRETATION 5 −3 1 1 Example: Let 퐴 = and let 푢 = 푥 = and 푣 = . −6 2 0 2 −1 1.) Find A푣 and Au. Draw a picture of 푣 and A푣 and 푢 and A푢. 2.) Find A(3푢 +2푣) and 퐴2 (3푢 +2푣). Hint: Use part 1.) EIGENVECTORS AND EIGENVALUES ▪ Definition: An eigenvector of an 푛 × 푛 matrix A is a nonzero vector x such that 퐴푥 = 휆푥 for some scalar λ in ℝ. In this case λ is called an eigenvalue and the solution x≠ ퟎ is called an eigenvector corresponding to λ. ▪ Definition: Let A be an 푛 × 푛 matrix. The set of solutions 푛 Eig(A, λ) = {x in ℝ , such that (퐴 − 휆퐼푛)x = 0} is called the eigenspace Eig(A, λ) of A corresponding to λ. It is the null space of the matrix 퐴 − 휆퐼푛: Eig(A, λ) = Nul(퐴 − 휆퐼푛) Slide 5.1- 7 EIGENVECTORS AND EIGENVALUES 16 Example: Show that 휆 =7 is an eigenvalue of matrix A = 52 and find the corresponding eigenspace Eig(A,7).
    [Show full text]
  • Worksheet 1, for the MATLAB Course by Hans G. Feichtinger, Edinburgh, Jan
    Worksheet 1, for the MATLAB course by Hans G. Feichtinger, Edinburgh, Jan. 9th Start MATLAB via: Start > Programs > School applications > Sci.+Eng. > Eng.+Electronics > MATLAB > R2007 (preferably). Generally speaking I suggest that you start your session by opening up a diary with the command: diary mydiary1.m and concluding the session with the command diary off. If you want to save your workspace you my want to call save today1.m in order to save all the current variable (names + values). Moreover, using the HELP command from MATLAB you can get help on more or less every MATLAB command. Try simply help inv or help plot. 1. Define an arbitrary (random) 3 × 3 matrix A, and check whether it is invertible. Calculate the inverse matrix. Then define an arbitrary right hand side vector b and determine the (unique) solution to the equation A ∗ x = b. Find in two different ways the solution to this problem, by either using the inverse matrix, or alternatively by applying Gauss elimination (i.e. the RREF command) to the extended system matrix [A; b]. In addition look at the output of the command rref([A,eye(3)]). What does it tell you? 2. Produce an \arbitrary" 7 × 7 matrix of rank 5. There are at east two simple ways to do this. Either by factorization, i.e. by obtaining it as a product of some 7 × 5 matrix with another random 5 × 7 matrix, or by purposely making two of the rows or columns linear dependent from the remaining ones. Maybe the second method is interesting (if you have time also try the first one): 3.
    [Show full text]
  • Different Forms of Linear Systems, Linear Combinations, and Span
    Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout 2 Page 1 of2 Different forms of Linear Systems, Linear Combinations, and Span (1.3-1.4) Terms you should know Linear combination (and weights): A vector y is called a linear combination of vectors v1; v2; :::; vk if given some numbers c1; c2; :::; ck, y = c1v1 + c2v2 + ::: + ckvk The numbers c1; c2; :::; ck are called weights. Span: We call the set of ALL the possible linear combinations of a set of vectors to be the span of those vectors. For example, the span of v1 and v2 is written as span(v1; v2) NOTE: The zero vector is in the span of ANY set of vectors in Rn. Rn: The set of all vectors with n entries 3 ways to write a linear system with m equations and n unknowns If A is the m×n coefficient matrix corresponding to a linear system, with columns a1; a2; :::; an, and b in Rm is the constant vector corresponding to that linear system, we may represent the linear system using 1. A matrix equation: Ax = b 2. A vector equation: x1a1 + x2a2 + ::: + xnan = b, where x1; x2; :::xn are numbers. h i 3. An augmented matrix: A j b NOTE: You should know how to multiply a matrix by a column vector, and that doing so would result in some linear combination of the columns of that matrix. Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout 2 Page 2 of2 Important theorems to know: Theorem. (Chapter 1, Theorem 3) If A is an m × n matrix, with columns a1; a2; :::; an and b is in Rm, the matrix equation Ax = b has the same solution set as the vector equation x1a1 + x2a2 + ::: + xnan = b as well as the system of linear equations whose augmented matrix is h i A j b Theorem.
    [Show full text]
  • Inner Product Spaces
    CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn.
    [Show full text]