Phylogenetic Biodiversity of Yeasts

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Biodiversity of Yeasts Eco. Env. & Cons. 26 (4) : 2020; pp. (1527-1530) Copyright@ EM International ISSN 0971–765X Phylogenetic biodiversity of Yeasts Alan Makarovich Hoziev1*, Boris Georgievich Tsugkiev1, Valentina Batyrbekovna Tsugkieva1, Andrey Georgievich Petrukovich1, Zalina Alimbekovna Kubatieva1, Susanna Konstantinovna Cherchesova2 and Soslan Anatolievich Siukaev1 1Gorsky State Agrarian University, 37 Kirov Street, Vladikavkaz, Republic of North Ossetia-Alania, 362040, Russia 2North Ossetian State University named after Kosta Levanovich Khetagurov, 44-46 Vatutina Street, Vladikavkaz, Republic of North Ossetia-Alania, 362025, Russia (Received 17 July, 2020; accepted 2 September, 2020) ABSTRACT The authors identified yeast strains from the following grape cultivars: Rhein Riesling -DEN1- (7-2018); Cabernet -ZH-3 (9-2018) and L-3 (6-2018); Flora -DEN-5 (10-2018). According to the analysis results of nucleotide sequence that codes part of rRNA genes, performed in BRC VKPM NRC “Kurchatov Institute” – State Research Institute of Genetics, it was found that DEN-1 (7-2018) strain belongs to the species Metschnikowia pulcherrima; ZH-1 (9-2018) strain is closest to the species Pichia kluyveri; L-3 (6-2018) strain is the representative of the species Metschnikowia pulcherrima and DEN-5 (10-2018) belongs to the species Pichia kudriavzevii. The studies confirm that the grape cultivars – Rhein Riesling, Cabernet, Flora, introduced in the Republic of North Ossetia-Alania, are promising natural resource of systematic yeast diversity. Key words : Yeasts, Strain, Gene encoding 18S rRNA, DNA, PCR mode Introduction Currently, biotechnology plays an important role in the fermentation of various substrates and in the Yeast cells are microbial eukaryotes that belong to production of ethanol, as well as in the production ascomycetes, which are a good source of vitamin B of biodiesel and many other biofuels (Madigan and and protein (Madigan, 2003). Yeasts are unicellular Martinko, 2006). Advances in biotechnology have fungi. As a living organism, fungi require heat, wa- shed the new light on ancient and well-proven tech- ter, protein, nitrogenous substances, and sugar to nologies, having provided humanity for both a new, stay alive (the Artisan, The Yeast Treatise, 2002). clean, sustainable biofuel and bright future (Orelli, The yeast cell averages about 8 µm in diameter 2006). (Ando, 2006). Each cell has a two-layer wall that is The yeasts strain – “Baker’s Yeasts” is scientifi- porous and semi-permeable to certain substances cally known as Saccharomyces cerevisiae, 5-10 µm- and thus through the wall nutrients enter the cell sized in diameter (Halasz, 1988). Saccharomyces and metabolites leave it (Madigan, 2003). cerevisiae is the most famous and popular yeast The use of yeasts (Saccharomyces cerevisiae) in the species, as it is used to make alcohol and bread. It is production of wine and beer, as well as bread has known for being the most commonly used as an al- been known since the Bible (Cocolin, 2001). coholic beverages fermenter and the most com- 1528 Eco. Env. & Cons. 26 (4) : 2020 monly used for making bread (Halasz, 1991). The genetic affinity of similar species. In the course of yeast species Saccharomyces cerevisiae is also safe for the study the following results were obtained: humans as it is not pathogenic and does not nega- GATCTCGCTTATTGATATGCGCAGGTT tively affect the environment. CACCTACGGAMTCCTCCGCTTATTGATATG Under certain conditions some yeast fungi can CGCASGWTCACCKACSRAWYCSKMCGYTTRW show their negative for human health properties KRRTATRYATMGGTYACCCWMS CAAAWY (Nasseri, 2011). CCTGG GGAAWACCCCGGGGCGCAATGTG CGTTCAAAGATTCAATGATTCACGTCTG Experimental CAAG TCATATTACGTATCGCAATTCGCTG The research material was yeast strains: DEN-1 (7- CGTTCTTCATCGATGCGAGAACCAAGAG 2018), ZH-3 (9-2018), L-3 (6-2018), DEN-5 (10-2018) ATCCGTTGTTGAAAGTTTTTKRATTGWGTTA isolated from berries of Rhein Riesling, Cabernet, TTGAMRRAAAAGATTYAGWTGTTTTTYCYWA and Flora grape cultivars. AAG GGGGWAAWA WKATT TTTWAWGAWY The primary identification of the selected strains CYTCCSCARGGTCMCCYWMSGGAGGKGG was performed in the Research Institute of Biotech- Phylogenetic analysis, performed by using nology of Gorsky State Agrarian University, using closely related strains, shows that yeast species traditional research methods. (Babyeva, 1979). Metschnikowia pulcherrima is the closest to L-3 (6- For the final identification based on the analysis 2018) strain. of ribosomal genes sequence, the strains DEN-1 (7- Identification of DEN-1 (7-2018) strain 2018), ZH-3 (9-2018), L-3 (6-2018), DEN-5 (10-2018) were sent to the Bioresource Centre – All-Russian b) Analysis of the gene sequences coding 18S rRNA. Collection of Industrial Microorganisms (BRC The similarity of the nucleotide sequence of the VKPM) National Research Centre “Kurchatov Insti- gene coding 18S rDNA of the studied strain was tute” - State Research Institute of Genetics. BRC analyzed using BLAST server [http:// VKPM NRC “Kurchatov Institute” – State Research www.ncbi.nlm.nih.gov/blast]. Institute of Genetics conducted standard genetic Results studies. Primary screening on the GenBank database shows Results and Discussion that the studied DEN-1 (7-2018) strain belongs to the following systematic group: Eukaryota; Fungi; Determining the taxonomic affiliation of L-3 (6- Dikarya; Ascomycota; Saccharomycotina; 2018) strain Saccharomycetes; Saccharomycetales; b) Analysis of the gene sequences coding 18S Metschnikowiaceae; Metschnikowia. rRNA of the studied strain was performed using Homology of at least 97% is considered to be the BLAST server [http://www.ncbi.nlm.nih.gov/ criterion for classifying the studied strain to a par- blast]. ticular species. In this regard the studied strain be- longs to several species. Results The method to compare nucleotide sequences Primary screening on the GenBank database shows coding 5,8 S rRNA gene and internal transcribed that the studied strain belongs to the following sys- spacers ITS1 and ITS2 was also used to determine tematic group: Eukaryota; Fungi; Dikarya; phylogenetic affinity of similar species. Ascomycota; Saccharomycotina; Saccharomycetes; Sac- When sequencing the DNA section coding 5,8 S charomycetales; Metschnikowiaceae; Metschnikowia. rRNA gene and internal transcribed spacers ITS1 Homology of at least 97% is considered to be the and ITS2, the following sequence was obtained: criterion for classifying the studied strain to a par- TCGGTCTCCGCTTATTGATATGCGCAGGTT ticular species. CACCTACGGAWTCCTCCGCTTATTGATATG The studied strain of the microorganism can be CGCAGGTTCACCTACSGAWTCCTMCGYT referred to a number of species. The method to com- TAWTRRTATRYATCMGSTYACCCWCS pare nucleotide sequences coding 5,8 S rRNA gene CAAAAYCCTGGGGAATACCCCGGGGCG and internal transcribed spacers ITS1 and ITS2 was CATGTGCGTTCAAAGATTCAATGATTCACGT used to determine taxonomic affiliation and phylo- CTGCAAGTCATATTACGTATCGCATTCGCT HOZIEV ET AL 1529 GCGTTCTTCATCGATGCGAGAACCAAGAGAT Pichia kudriavzevii is the closest to DEN-5 (10- CCGTTGTTGAAAGTTTTTTWATTGWGTGW 2018) strain. WTGAMRAWAA AKATTTG GAGTTT GTTTCTS Identification of ZH-3 (9-2018) strain CMARAG WGTGW GAAWW ATTA TTA TGAAT GATCCYCCCGYA CGCCCA CCGAAG GAA. (b) Analysis of the gene sequences coding 18S Phylogenetic analysis, performed by using rRNA of the studied strain was performed using closely related strains, shows that yeast species BLAST server [http://www.ncbi.nlm.nih.gov/ Metschnikowia pulcherrima is the closest to DEN-1 (7- blast]. 2018) strain. Results Identification of DEN-5 (10-2018) strain Primary screening on the GenBank database shows b) Analysis of the gene sequences coding 18S rRNA. that the studied strain belongs to the following sys- The similarity of the nucleotide sequence of the tematic group: Eukaryota; Fungi; Dikarya; gene coding 18S rDNA was analyzed using BLAST Ascomycota; Saccharomycotina; Saccharomycetes; Sac- server [http://www.ncbi.nlm.nih.gov/blast]. charomycetales; Pichiaceae; Pichia. Homology of at least 97% is considered to be the Results criterion for classifying the studied strain to one or Primary screening on the GenBank database shows another species. The analyzed strain can be referred that the studied strain belongs to the following sys- to several species. tematic group: Eukaryota; Fungi; Dikarya; The method to compare nucleotide sequences Ascomycota; Saccharomycotina; Saccharomycetes; Sac- coding 5,8 S rRNA gene and internal transcribed charomycetales; Pichiaceae; Pichia. spacers ITS1 and ITS2 was also used to determine Homology of at least 97% is considered to be the phylogenetic affinity of similar species. criterion for classifying the studied strain to a par- When sequencing the DNA section coding 5,8 S ticular species. In this regard the studied strain be- rRNA gene and internal transcribed spacers ITS1 longs to several species. and ITS2, the following sequence was obtained: The method to compare nucleotide sequences CCGTATCCTCCKCTTATTGATRTGCGCAGGTTCA coding 5,8 S rRNA gene and internal transcribed CCTACGRARTCCTCCGCTTATTGATATRMTKC spacers ITS1 and ITS2 was used to determine phy- ARGTTCACYTMSYSCWTCAYCCTCYTTTCGWA logenetic affinity of similar species. TAAGGSTAGCCYGTTCTCAACTCTGCTTGCGC When sequencing the DNA section coding 5,8 S AAGAAGGAACGACGCTSAGACGGCATGCCC rRNA gene and internal transcribed spacers ITS1 CATGGAATACCATGGGGCGCAATGTGCG and ITS2, the following sequence was obtained: TTSAAGAACTCGATGATTCACGATGGCT TCGCATCTCCGCTTATTGATATGCGCAGGTTCA GCCATTCACAMTAGGTATCGCATTTCGCTG CCTACGRAMTCCTCCGCTTATYGRTMKGCGC CGCTCTTCATCGATGCGAGAACCAAGAGAT
Recommended publications
  • Expanding the Knowledge on the Skillful Yeast Cyberlindnera Jadinii
    Journal of Fungi Review Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii Maria Sousa-Silva 1,2 , Daniel Vieira 1,2, Pedro Soares 1,2, Margarida Casal 1,2 and Isabel Soares-Silva 1,2,* 1 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (M.S.-S.); [email protected] (D.V.); [email protected] (P.S.); [email protected] (M.C.) 2 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal * Correspondence: [email protected]; Tel.: +351-253601519 Abstract: Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials C4Y5P9|C4Y5P9_CLAL4 ------------------MS-EDLTKKTE------ELSLDSEKTVLSSKEEFTAKHPLNS 35 Q9P975|IF4E_CANAL ------------------MS-EELAQKTE------ELSLDS-KTVFDSKEEFNAKHPLNS 34 Q6BXX3|Q6BXX3_DEBHA --MKVF------TNKIAKMS-EELSKQTE------ELSLENKDTVLSNKEEFTAKHPLNN 45 C5DJV3|C5DJV3_LACTC ------------------MSVEEVTQKTG-D-----LNIDEKSTVLSSEKEFQLKHPLNT 36 P07260|IF4E_YEAST ------------------MSVEEVSKKFE-ENVSVDDTTATPKTVLSDSAHFDVKHPLNT 41 I2JS39|I2JS39_DEKBR MQMNLVGRTFPASERTRQSREEKPVE----AEVAKPEEEKKDVTVLENKEEFTVKHPLNS 56 A0A099P1Q5|A0A099P1Q5_PICKU ------------------MSTEELNN----ATKDLSLDEKKDVTALENPAEFNVKHPLNS 38 P78954|IF4E1_SCHPO ------------------MQTEQPPKESQTENTVSEPQEKALRTVFDDKINFNLKHPLAR 42 *. : *.:.. .* **** C4Y5P9|C4Y5P9_CLAL4 KWTLWYTKPQTNKSETWSDLLKPVITFSSVEEFWGIYNSIPVANQLPMKSDYHLFKEGIK 95 Q9P975|IF4E_CANAL RWTLWYTKPQTNKSENWHDLLKPVITFSSVEEFWGIYNSIPPANQLPLKSDYHLFKEGIR 94 Q6BXX3|Q6BXX3_DEBHA KWTLWYTKPQVNKSENWHDLLKPVITFSSVEEFWGIYNSIPQANQLPMKSDYHLFKEGIK 105 C5DJV3|C5DJV3_LACTC KWTLWYTKPPVDKSESWSDLLRPVTSFETVEEFWAIHNAIPKPRYLPLKSDYHLFRNDIR 96 P07260|IF4E_YEAST KWTLWYTKPAVDKSESWSDLLRPVTSFQTVEEFWAIIQNIPEPHELPLKSDYHVFRNDVR 101 I2JS39|I2JS39_DEKBR KWTLWYTKPAVDKNESWADLLKPIVSFDTVEEFWGIYHAVPKAVDLPLKSDYHLFRNDIK 116 A0A099P1Q5|A0A099P1Q5_PICKU TWTLWYTKPAVDNTESWADLLKPVVTFNTVEEFWGIFHAIPKVNELPLKSDYHLFRGDIK 98 P78954|IF4E1_SCHPO PWTLWFLMPPTPG-LEWNELQKNIITFNSVEEFWGIHNNINPASSLPIKSDYSFFREGVR 101 ****: * . * :* : : :*.:*****.* : : **:**** .*: .:: C4Y5P9|C4Y5P9_CLAL4 PEWEDEQNAKGGRWQYSFNNKRDVAQVINDLWLRGLLAVIGETIEDD---ENEVNGIVLN 152 Q9P975|IF4E_CANAL PEWEDEANSKGGKWQFSFNKKSEVNPIINDLWLRGLLAVIGETIEDE---ENEVNGIVLN
    [Show full text]
  • GRAS Notice for Pichia Kudriavzevii ASCUSDY21 for Use As a Direct Fed Microbial in Dairy Cattle
    GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle Prepared for: Division of Animal Feeds, (HFV-220) Center for Veterinary Medicine 7519 Standish Place Rockville, Maryland 20855 Submitted by: ASCUS Biosciences, Inc. 6450 Lusk Blvd Suite 209 San Diego, California 92121 GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle TABLE OF CONTENTS PART 1 – SIGNED STATEMENTS AND CERTIFICATION ................................................................................... 9 1.1 Name and Address of Organization .............................................................................................. 9 1.2 Name of the Notified Substance ................................................................................................... 9 1.3 Intended Conditions of Use .......................................................................................................... 9 1.4 Statutory Basis for the Conclusion of GRAS Status ....................................................................... 9 1.5 Premarket Exception Status .......................................................................................................... 9 1.6 Availability of Information .......................................................................................................... 10 1.7 Freedom of Information Act, 5 U.S.C. 552 .................................................................................. 10 1.8 Certification ................................................................................................................................
    [Show full text]
  • The Species-Specific Acquisition and Diversification of a Novel Family Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.322909; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Species-specific Acquisition and Diversification of a Novel 2 Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. 3 4 Lance R. Fredericks1, Mark D. Lee1, Angela M. Crabtree1, Josephine M. Boyer1, Emily A. Kizer1, Nathan T. 5 Taggart1, Samuel S. Hunter2#, Courtney B. Kennedy1, Cody G. Willmore1, Nova M. Tebbe1, Jade S. Harris1, 6 Sarah N. Brocke1, Paul A. Rowley1* 7 8 1Department of Biological Sciences, University of Idaho, Moscow, ID, USA 9 2iBEST Genomics Core, University of Idaho, Moscow, ID 83843, USA 10 #currently at University of California Davis Genome Center, University of California, Davis, 451 Health Sciences Dr., Davis, CA 11 95616 12 *Correspondence: [email protected] 13 14 Abstract 15 Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, 16 including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been 17 previously identified, their evolutionary origins remain uncertain given that many of the se genes 18 have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the 19 Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity 20 produced by Saccharomyces paradoxus. The expression of this novel killer toxin is associated 21 with the presence of a dsRNA totivirus and a satellite dsRNA.
    [Show full text]
  • Downloaded from NCBI Genbank Or Sequence
    Lind and Pollard Microbiome (2021) 9:58 https://doi.org/10.1186/s40168-021-01015-y METHODOLOGY Open Access Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing Abigail L. Lind1 and Katherine S. Pollard1,2,3,4,5* Abstract Background: Microbial eukaryotes are found alongside bacteria and archaea in natural microbial systems, including host-associated microbiomes. While microbial eukaryotes are critical to these communities, they are challenging to study with shotgun sequencing techniques and are therefore often excluded. Results: Here, we present EukDetect, a bioinformatics method to identify eukaryotes in shotgun metagenomic sequencing data. Our approach uses a database of 521,824 universal marker genes from 241 conserved gene families, which we curated from 3713 fungal, protist, non-vertebrate metazoan, and non-streptophyte archaeplastida genomes and transcriptomes. EukDetect has a broad taxonomic coverage of microbial eukaryotes, performs well on low-abundance and closely related species, and is resilient against bacterial contamination in eukaryotic genomes. Using EukDetect, we describe the spatial distribution of eukaryotes along the human gastrointestinal tract, showing that fungi and protists are present in the lumen and mucosa throughout the large intestine. We discover that there is a succession of eukaryotes that colonize the human gut during the first years of life, mirroring patterns of developmental succession observed in gut bacteria. By comparing DNA and RNA sequencing of paired samples from human stool, we find that many eukaryotes continue active transcription after passage through the gut, though some do not, suggesting they are dormant or nonviable. We analyze metagenomic data from the Baltic Sea and find that eukaryotes differ across locations and salinity gradients.
    [Show full text]
  • Úvod Abstract
    ZPRÁVY LESNICKÉHOLUKÁŠOVÁ VÝZKUMU, K. – HOLUŠA 57, 2012 J. (3): 230-240 PATOGENY LÝKOŽROUTŮ RODU IPS (COLEOPTERA: CURCULIONIDAE: SCOLYTINAE): REVIEW PATHOGENS OF BARK BEETLES OF THE GENUS IPS (COLEOPTERA: CURCULIONIDAE: SCOLYTINAE): REVIEW KAROLINA LUKÁŠOVÁ1) – JAROSLAV HOLUŠA1,2) 1)Česká zemědělská univerzita v Praze, Fakulta lesnická a dřevařská, Praha 2)Výzkumný ústav lesního hospodářství a myslivosti, v. v. i., Strnady ABSTRACT Some bark beetles of genus Ips occuring in Europe attack multiple tree hosts. is probably explains why some of the bark beetle diseases have also more hosts. For example Gregarina typographi was known from all of six analysed species and Chytridiopsis typographi from midgut epithelium of ve species of the genus Ips. On the other hand there is only one known species-speci c pathogen Larssoniella typographi described in Ips duplicatus. At present, around twenty species of pathogens were described in bark beetle subfamily Scolytinae, out of which ten are known in the spruce bark beetle Ips typographus. For most pathogens, only rare information is available about in uence on beetles: on the vitality, fertility, ight ability, hibernation, etc. Moreover, most experiments are conducted under laboratory conditions. In this paper we summarize the knowledge of pathogens (viruses, protozoa, fungi) and parasitic nematodes and give a comprehensive overview of detected pathogens in di erent species of genus Ips. Klíčová slova: rod Ips, mikrosporidie, gregariny, virus, populační hustota, předávání Key words: genus Ips, microsporidia, gregarines, virus, population density, transmission ÚVOD výzkum. Ještě slabší jsou znalosti o hlísticích. Všechny druhy vázané na rod Ips byly zpracovány v monogra i R (1956), od té doby Lýkožrouti rodu Ips (Coleoptera: Curculionidae: Scolytinae) napadají bylo napsáno jen několik studií na toto téma.
    [Show full text]
  • Snails As Taxis for a Large Yeast Biodiversity
    fermentation Article Snails as Taxis for a Large Yeast Biodiversity Madina Akan 1,2, Florian Michling 1, Katrin Matti 1, Sinje Krause 1, Judith Muno-Bender 1 and Jürgen Wendland 1,2,* 1 Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, D-65366 Geisenheim, Germany; [email protected] (M.A.); fl[email protected] (F.M.); [email protected] (K.M.); [email protected] (S.K.); [email protected] (J.M.-B.) 2 Research Group of Microbiology (MICR)—Functional Yeast Genomics, Vrije Universiteit Brussel, Pleinlaan 2, BE-1050 Brussels, Belgium * Correspondence: [email protected]; Tel.: +49-6722-502-332 Received: 24 August 2020; Accepted: 15 September 2020; Published: 18 September 2020 Abstract: Yeasts are unicellular fungi that harbour a large biodiversity of thousands of species, of which particularly ascomycetous yeasts are instrumental to human food and beverage production. There is already a large body of evidence showing that insects play an important role for yeast ecology, for their dispersal to new habitats and for breeding and overwintering opportunities. Here, we sought to investigate a potential role of the terrestrial snails Cepaea hortensis and C. nemoralis, which in Europe are often found in association with human settlements and gardens, in yeast ecology. Surprisingly,even in a relatively limited culture-dependent sampling size of over 150 isolates, we found a variety of yeast genera, including species frequently isolated from grape must such as Hanseniaspora, Metschnikowia, Meyerozyma and Pichia in snail excrements. We typed the isolates using standard ITS-PCR-sequencing, sequenced the genomes of three non-conventional yeasts H.
    [Show full text]
  • Microbiological Aspect and Laboratory Diagnosis of Fungi of the Genus Brettanomyces
    Conferinţa tehnico-ştiinţifică a studenţilor, masteranzilor şi doctoranzilor, 1-3 aprilie 2020, Chișinău, Republica Moldova MICROBIOLOGICAL ASPECT AND LABORATORY DIAGNOSIS OF FUNGI OF THE GENUS BRETTANOMYCES Emilia BEHTA1,2 1Universitatea Tehnică a Moldovei, Școala doctorală Știința Alimentelor, Economie și Management, bd. Ștefan cel Mare, 168, Chișinău, Moldova 2 Universitatea de Stat de Medicină și Farmacie“Nicolae Testemitanu, bd Stefan cel Mare165, Chișinău, Moldova *Autor corespondent: e-mail [email protected] Abstract. Wine spoilage can be caused by different genera and types of wild yeast. One of the most harmful microorganisms is the yeast of the genus Brettanomyces/Dekkera. The timely detection and quantification of these microorganisms is essential to prevent wine spoilage. The detection of yeast in the raw wine materials was carried out by classical microbiological methods. The potential of microbiological for wine monitoring has been studied in order to optimize the analysis process. As a result of studies in raw wines produced in the microvinification section of the FTA's Department of Oenology and Chemistry, the advantages and disadvantages of the “gold standard” of microbiology, the cultural method for Brettanomyces/Dekkera yeast, were evaluated. Key words: Brettanomyces, wine, cultivation, culture media. Introduction The wine industry is traditionally considered the main and strategic sector of the economy of the Republic of Moldova, it is an important source of direct and indirect income for a significant part of the country's population. In the conditions of difficult economic situation in the country, the wineries of the Republic of Moldova are making significant efforts to reorient and diversify their exports.
    [Show full text]
  • Brettanomyces (Dekkera)
    Kvasny Prum. 198 62 / 2016 (7–8) Kvasinky non-Saccharomyces a jejich význam v pivovarském průmyslu. I. část – Brettanomyces (Dekkera) DOI: 10.18832/kp2016024 Kvasinky non-Saccharomyces a jejich význam v pivovarském průmyslu. I. část – Brettanomyces (Dekkera) Non-Saccharomyces Yeasts and Their Importance in the Brewing Industry Part I -Brettanomyces (Dekkera) Tatiana KOCHLÁŇOVÁ1, David KIJ1, Jana KOPECKÁ1, Petra KUBIZNIAKOVÁ2, Dagmar MATOULKOVÁ2 1Ústav experimentální biologie, Přírodovědecká fakulta, Masarykova Univerzita / Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, e-mail: [email protected], [email protected] 2Mikrobiologické oddělení, Výzkumný ústav pivovarský a sladařský, a.s., / Department of Microbiology, Research Institute of Brewing and Malting, PLC, Lípová 15, 120 44 Prague e-mail: [email protected], [email protected] Recenzovaný článek / Reviewed Paper Kochláňová, T., Kij, D., Kopecká, J., Kubizniaková, P., Matoulková, D., 2016: Kvasinky non-Saccharomyces a jejich význam v pivovarském průmyslu. I. část – Brettanomyces (Dekkera). Kvasny Prum., 62(7–8), s. 198–205 Kvasinky jiných rodů než Saccharomyces se v historii výroby piva vyskytovaly jako součást spontánního kvašení. Nyní jsou považová- ny většinou za kontaminaci produkující nežádoucí senzoricky aktivní látky a CO2. Výjimkou jsou speciální pivní styly (např. lambik a gu- euze), kde je metabolická činnost non-Saccharomyces kvasinek (zejména rodů Brettanomyces a Dekkera) klíčovým prvkem. V článku je uvedena charakteristika a taxonomické zařazení kvasinek Brettanomyces a Dekkera a popsány jsou základní mikrobiologické aspekty výroby piva lambik a gueuze. Kochláňová, T., Kij, D., Kopecká, J., Kubizniaková, P., Matoulková, D., 2016: Non-Saccharomyces yeasts and their importance in the brewing industry. Part I – Brettanomyces (Dekkera).
    [Show full text]
  • A Curated Ortholog Database for Yeasts and Fungi Spanning 600 Million Years of Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/237974; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution Kevin Correia1, Shi M. Yu1, and Radhakrishnan Mahadevan1,2,* 1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada, ON 2Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada Corresponding author: Radhakrishnan Mahadevan∗ Email address: [email protected] ABSTRACT Budding yeasts inhabit a range of environments by exploiting various metabolic traits. The genetic bases for these traits are mostly unknown, preventing their addition or removal in a chassis organism for metabolic engineering. To help understand the molecular evolution of these traits in yeasts, we created Analyzing Yeasts by Reconstructing Ancestry of Homologs (AYbRAH), an open-source database of predicted and manually curated ortholog groups for 33 diverse fungi and yeasts in Dikarya, spanning 600 million years of evolution. OrthoMCL and OrthoDB were used to cluster protein sequence into ortholog and homolog groups, respectively; MAFFT and PhyML were used to reconstruct the phylogeny of all homolog groups. Ortholog assignments for enzymes and small metabolite transporters were compared to their phylogenetic reconstruction, and curated to resolve any discrepancies. Information on homolog and ortholog groups can be viewed in the AYbRAH web portal (https://kcorreia.github. io/aybrah/) to review ortholog groups, predictions for mitochondrial localization and transmembrane domains, literature references, and phylogenetic reconstructions.
    [Show full text]
  • Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces Bruxellensis: a Review
    applied sciences Review Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review Alessandra Di Canito , Roberto Foschino , Martina Mazzieri and Ileana Vigentini * Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milan, Italy; [email protected] (A.D.C.); [email protected] (R.F.); [email protected] (M.M.) * Correspondence: [email protected] Abstract: The Brettanomyces bruxellensis species plays various roles in both the industrial and food sectors. At the biotechnological level, B. bruxellensis is considered to be a promising species for biofuel production. Its presence in alcoholic beverages can be detrimental or beneficial to the final product; B. bruxellensis can contribute to spoilage of wine and beer, but can also produce good aromas. However, little is known about its genetic characteristics and, despite the complete sequencing of several B. bruxellensis genomes and knowledge of its metabolic pathways, the toolkits for its efficient and easy genetic modification are still underdeveloped. Moreover, the different ploidy states and the high level of genotype diversity within this species makes the development of effective genetic manipulation tools challenging. This review summarizes the available tools for the genetic manipulation of B. bruxellensis and how they may be employed to improve the quality of wine and beer. Keywords: Brettanomyces bruxellensis; Dekkera bruxellensis; molecular biology; molecular biotechnology; Citation: Di Canito, A.; Foschino, R.; CRISPR/Cas9 approach Mazzieri, M.; Vigentini, I. Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review. Appl. Sci. 2021, 11, 7302. 1. Introduction https://doi.org/10.3390/app11167302 The Brettanomyces genus was first described by Kufferath and Van Laer in 1921, and its primary taxonomic framework was established in 1964 by van der Walt [1].
    [Show full text]
  • Some Insights Into the General and Fermentative Microbiota of Vineyard Soils
    fermentation Article Looking at the Origin: Some Insights into the General and Fermentative Microbiota of Vineyard Soils Alejandro Alonso 1 , Miguel de Celis 1 , Javier Ruiz 1 , Javier Vicente 1 , Eva Navascués 2 , Alberto Acedo 3 , Rüdiger Ortiz-Álvarez 3 , Ignacio Belda 3,4 , Antonio Santos 1,* , María Ángeles Gómez-Flechoso 5 and Domingo Marquina 1 1 Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain 2 Pago de Carraovejas, S.L.U., Camino de Carraovejas, s/n, 47300 Peñafiel, Valladolid, Spain 3 Science Department, Biome Makers Spain, 47011 Valladolid, Spain 4 Department of Biology, Geology, Physics & Inorganic Chemistry, Unit of Biodiversity and Conservation, Rey Juan Carlos University, 28933 Móstoles, Spain 5 Departament of Earth Physics & Astrophysics, Physics Faculty, Complutense University of Madrid, 28040 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-913-944-962 Received: 8 July 2019; Accepted: 27 August 2019; Published: 29 August 2019 Abstract: In winemaking processes, there is a current tendency to develop spontaneous fermentations taking advantage of the metabolic diversity of derived from the great microbial diversity present in grape musts. This enological practice enhances wine complexity, but undesirable consequences or deviations could appear on wine quality. Soil is a reservoir of important microorganisms for different beneficial processes, especially for plant nutrition, but it is also the origin of many of the phytopathogenic microorganisms that affect vines. In this study, a meta-taxonomic analysis of the microbial communities inhabiting vineyard soils was realized. A significant impact of the soil type and climate aspects (seasonal patterns) was observed in terms of alpha and beta bacterial diversity, but fungal populations appeared as more stable communities in vineyard soils, especially in terms of alpha diversity.
    [Show full text]