Mouse Tarbp2 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tarbp2 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tarbp2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tarbp2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tarbp2 gene (NCBI Reference Sequence: NM_009319 ; Ensembl: ENSMUSG00000023051 ) is located on Mouse chromosome 15. 9 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 9 (Transcript: ENSMUST00000023813). Exon 3~4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tarbp2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-301N23 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous inactivation of this gene results in lethality at weaning, decreased body weight, and male infertility associated with oligozoospermia and failure of spermiation. Exon 3 starts from about 20.46% of the coding region. The knockout of Exon 3~4 will result in frameshift of the gene. The size of intron 2 for 5'-loxP site insertion: 1183 bp, and the size of intron 4 for 3'-loxP site insertion: 510 bp. The size of effective cKO region: ~1239 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Tarbp2 cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7739bp) | A(22.15% 1714) | C(26.67% 2064) | T(23.85% 1846) | G(27.33% 2115) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr15 + 102517226 102520225 3000 browser details YourSeq 227 1564 2068 3000 92.2% chr6 - 47432920 47433147 228 browser details YourSeq 110 1230 1379 3000 93.7% chr7 + 127154953 127155123 171 browser details YourSeq 52 2790 2904 3000 92.0% chr1 + 87563023 87563140 118 browser details YourSeq 51 2784 2901 3000 85.0% chr9 + 14954580 14954698 119 browser details YourSeq 48 2872 2947 3000 85.3% chr3 - 67671490 67671566 77 browser details YourSeq 43 2767 2826 3000 86.7% chrX - 38815614 38815680 67 browser details YourSeq 41 2866 2914 3000 91.9% chr13 + 20436490 20436538 49 browser details YourSeq 39 2809 2903 3000 70.6% chr19 - 29999387 29999481 95 browser details YourSeq 39 2627 2904 3000 93.4% chr11 - 114497602 114498041 440 browser details YourSeq 38 2617 2826 3000 88.0% chr2 - 180280274 180280483 210 browser details YourSeq 38 2872 2926 3000 86.6% chr2 + 132969811 132969866 56 browser details YourSeq 37 2885 2926 3000 95.3% chr9 - 91918636 91918678 43 browser details YourSeq 36 2886 2928 3000 97.4% chr1 - 119277808 119277851 44 browser details YourSeq 36 2872 2909 3000 97.4% chr6 + 93654888 93654925 38 browser details YourSeq 36 2875 2925 3000 92.9% chr1 + 52321226 52321277 52 browser details YourSeq 33 2783 2819 3000 94.6% chr2 + 29356003 29356039 37 browser details YourSeq 32 2776 2809 3000 97.1% chr9 - 60699350 60699383 34 browser details YourSeq 32 2873 2919 3000 90.0% chr2 - 53766643 53766694 52 browser details YourSeq 32 2789 2826 3000 92.2% chr1 - 75128111 75128148 38 Note: The 3000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr15 + 102521465 102524464 3000 browser details YourSeq 931 515 2212 3000 97.2% chr6 - 47431786 47432727 942 browser details YourSeq 853 515 2191 3000 93.2% chr7 + 127155316 127156262 947 browser details YourSeq 33 851 958 3000 94.6% chr3 + 89491347 89491458 112 browser details YourSeq 31 762 796 3000 97.0% chr4 + 135956346 135956433 88 browser details YourSeq 25 2592 2617 3000 100.0% chr3 - 88535765 88535791 27 browser details YourSeq 25 1731 1760 3000 96.5% chr1 - 5959685 5959714 30 browser details YourSeq 25 735 762 3000 84.7% chr1 + 175644741 175644766 26 browser details YourSeq 24 1662 1685 3000 100.0% chr11 - 45504904 45504927 24 browser details YourSeq 23 2557 2579 3000 100.0% chr6 + 57466461 57466483 23 browser details YourSeq 21 627 647 3000 100.0% chr17 + 90502571 90502591 21 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Tarbp2 TARBP2, RISC loading complex RNA binding subunit [ Mus musculus (house mouse) ] Gene ID: 21357, updated on 12-Aug-2019 Gene summary Official Symbol Tarbp2 provided by MGI Official Full Name TARBP2, RISC loading complex RNA binding subunit provided by MGI Primary source MGI:MGI:103027 See related Ensembl:ENSMUSG00000023051 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Prbp; TRBP Expression Ubiquitous expression in testis adult (RPKM 86.4), thymus adult (RPKM 26.8) and 28 other tissues See more Orthologs human all Genomic context Location: 15 F3; 15 57.65 cM See Tarbp2 in Genome Data Viewer Exon count: 11 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 15 NC_000081.6 (102516077..102523676) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 15 NC_000081.5 (102348677..102354107) Chromosome 15 - NC_000081.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 14 transcripts Gene: Tarbp2 ENSMUSG00000023051 Description TARBP2, RISC loading complex RNA binding subunit [Source:MGI Symbol;Acc:MGI:103027] Gene Synonyms Prbp, TRBP Location Chromosome 15: 102,518,192-102,523,676 forward strand. GRCm38:CM001008.2 About this gene This gene has 14 transcripts (splice variants), 203 orthologues, 14 paralogues, is a member of 1 Ensembl protein family and is associated with 7 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tarbp2- ENSMUST00000023813.8 1523 365aa ENSMUSP00000023813.2 Protein coding CCDS27886 P97473 TSL:1 201 GENCODE basic APPRIS P1 Tarbp2- ENSMUST00000100168.9 1278 274aa ENSMUSP00000097744.3 Protein coding CCDS57013 Q3UNH9 TSL:1 202 GENCODE basic Tarbp2- ENSMUST00000146756.7 1081 225aa ENSMUSP00000121748.1 Protein coding - D3Z282 CDS 3' 208 incomplete TSL:3 Tarbp2- ENSMUST00000142194.2 782 243aa ENSMUSP00000123339.1 Protein coding - D3YZS5 CDS 3' 207 incomplete TSL:3 Tarbp2- ENSMUST00000150393.8 489 89aa ENSMUSP00000120315.2 Protein coding - D3Z033 CDS 3' 210 incomplete TSL:5 Tarbp2- ENSMUST00000229805.1 377 42aa ENSMUSP00000155826.1 Protein coding - A0A2R8VI89 CDS 3' 214 incomplete Tarbp2- ENSMUST00000131184.7 1819 79aa ENSMUSP00000117964.1 Nonsense mediated - D6RE49 TSL:1 203 decay Tarbp2- ENSMUST00000154948.7 951 111aa ENSMUSP00000154902.1 Nonsense mediated - A0A2R8VHA7 CDS 5' 213 decay incomplete TSL:3 Tarbp2- ENSMUST00000149200.7 482 58aa ENSMUSP00000123213.1 Nonsense mediated - D6RCY4 TSL:3 209 decay Tarbp2- ENSMUST00000136968.1 2732 No - Retained intron - - TSL:2 205 protein Tarbp2- ENSMUST00000141266.7 1033 No - Retained intron - - TSL:2 206 protein Tarbp2- ENSMUST00000134033.7 713 No - Retained intron - - TSL:2 204 protein Tarbp2- ENSMUST00000153171.1 707 No - Retained intron - - TSL:2 211 protein Tarbp2- ENSMUST00000154451.1 704 No - Retained intron - - TSL:2 212 protein Page 6 of 8 https://www.alphaknockout.com 25.48 kb Forward strand 102.51Mb 102.52Mb 102.53Mb Genes (Comprehensive set... Tarbp2-203 >nonsense mediated decay Tarbp2-206 >retained intron Tarbp2-202 >protein coding Tarbp2-205 >retained intron Tarbp2-214 >protein coding Tarbp2-210 >protein coding Tarbp2-201 >protein coding Tarbp2-212 >retained intron Tarbp2-213 >nonsense mediated decay Tarbp2-204 >retained intron Tarbp2-208 >protein coding Tarbp2-209 >nonsense mediated decay Tarbp2-207 >protein coding Tarbp2-211 >retained intron Contigs AC137156.3 > Genes < Map3k12-201protein coding < Npff-201protein coding < Atf7-210protein coding (Comprehensive set... < Map3k12-208protein coding < Gm28047-201nonsense mediated decay < Map3k12-207protein coding < Npff-202retained intron < Atf7-201protein coding < Map3k12-206protein coding < Atf7-211protein coding < Map3k12-203protein coding < Atf7-209protein coding < Map3k12-205protein coding < Map3k12-202retained
Recommended publications
  • Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay
    bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and decay Lisa Fish1,2,3, Hoang C.B. Nguyen4, Steven Zhang1,2,3, Myles Hochman1,2,3, Brian D. Dill5, Henrik Molina5, Hamed S. Najafabadi6,7, Claudio Alarcon8,9, Hani Goodarzi1,2,3* 1 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA 2 Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA 3 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 4 Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 5 Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 6 Department of Human Genetics, McGill University, Montreal, QC, Canada, H3A 0C7 7 McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada, H3A 0G1 8 Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA 9 Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA *Corresponding author: Hani Goodarzi 600 16th St. San Francisco, CA 94158 Phone: 415-230-5189 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Genome-Wide Recommendation of RNA–Protein Interactions Gianluca Corrado1,*, Toma Tebaldi2, Fabrizio Costa3, Paolo Frasconi4 and Andrea Passerini1,*
    Bioinformatics, 32(23), 2016, 3627–3634 doi: 10.1093/bioinformatics/btw517 Advance Access Publication Date: 8 August 2016 Original Paper Data and text mining RNAcommender: genome-wide recommendation of RNA–protein interactions Gianluca Corrado1,*, Toma Tebaldi2, Fabrizio Costa3, Paolo Frasconi4 and Andrea Passerini1,* 1Department of Information Engineering and Computer Science, University of Trento, Trento 38123, Italy, 2Centre for Integrative Biology, University of Trento, Trento 38123, Italy, 3Department of Computer Science, Albert- Ludwigs-Universitaet Freiburg, Freiburg 79110, Germany and 4Dipartimento di Ingegneria dell’Informazione, University of Florence, Florence 50139, Italy Associate Editor: Ivo Hofacker *To whom correspondence should be addressed. Received on March 17, 2016; revised on July 29, 2016; accepted on August 2, 2016 Abstract Motivation: Information about RNA–protein interactions is a vital pre-requisite to tackle the dissec- tion of RNA regulatory processes. Despite the recent advances of the experimental techniques, the currently available RNA interactome involves a small portion of the known RNA binding proteins. The importance of determining RNA–protein interactions, coupled with the scarcity of the available information, calls for in silico prediction of such interactions. Results: We present RNAcommender, a recommender system capable of suggesting RNA targets to unexplored RNA binding proteins, by propagating the available interaction information taking into account the protein domain composition and the RNA predicted secondary structure. Our re- sults show that RNAcommender is able to successfully suggest RNA interactors for RNA binding proteins using little or no interaction evidence. RNAcommender was tested on a large dataset of human RBP-RNA interactions, showing a good ranking performance (average AUC ROC of 0.75) and significant enrichment of correct recommendations for 75% of the tested RBPs.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Dissertation
    Regulation of gene silencing: From microRNA biogenesis to post-translational modifications of TNRC6 complexes DISSERTATION zur Erlangung des DOKTORGRADES DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Johannes Danner aus Eggenfelden im Jahr 2017 Das Promotionsgesuch wurde eingereicht am: 12.09.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Gunter Meister Johannes Danner Summary ‘From microRNA biogenesis to post-translational modifications of TNRC6 complexes’ summarizes the two main projects, beginning with the influence of specific RNA binding proteins on miRNA biogenesis processes. The fate of the mature miRNA is determined by the incorporation into Argonaute proteins followed by a complex formation with TNRC6 proteins as core molecules of gene silencing complexes. miRNAs are transcribed as stem-loop structured primary transcripts (pri-miRNA) by Pol II. The further nuclear processing is carried out by the microprocessor complex containing the RNase III enzyme Drosha, which cleaves the pri-miRNA to precursor-miRNA (pre-miRNA). After Exportin-5 mediated transport of the pre-miRNA to the cytoplasm, the RNase III enzyme Dicer cleaves off the terminal loop resulting in a 21-24 nt long double-stranded RNA. One of the strands is incorporated in the RNA-induced silencing complex (RISC), where it directly interacts with a member of the Argonaute protein family. The miRNA guides the mature RISC complex to partially complementary target sites on mRNAs leading to gene silencing. During this process TNRC6 proteins interact with Argonaute and recruit additional factors to mediate translational repression and target mRNA destabilization through deadenylation and decapping leading to mRNA decay.
    [Show full text]
  • Bioinformatics Approach to Probe Protein-Protein Interactions
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2013 Bioinformatics Approach to Probe Protein-Protein Interactions: Understanding the Role of Interfacial Solvent in the Binding Sites of Protein-Protein Complexes;Network Based Predictions and Analysis of Human Proteins that Play Critical Roles in HIV Pathogenesis. Mesay Habtemariam Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Bioinformatics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2997 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Mesay A. Habtemariam 2013 All Rights Reserved Bioinformatics Approach to Probe Protein-Protein Interactions: Understanding the Role of Interfacial Solvent in the Binding Sites of Protein-Protein Complexes; Network Based Predictions and Analysis of Human Proteins that Play Critical Roles in HIV Pathogenesis. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. By Mesay Habtemariam B.Sc. Arbaminch University, Arbaminch, Ethiopia 2005 Advisors: Glen Eugene Kellogg, Ph.D. Associate Professor, Department of Medicinal Chemistry & Institute For Structural Biology And Drug Discovery Danail Bonchev, Ph.D., D.SC. Professor, Department of Mathematics and Applied Mathematics, Director of Research in Bioinformatics, Networks and Pathways at the School of Life Sciences Center for the Study of Biological Complexity. Virginia Commonwealth University Richmond, Virginia May 2013 ኃይልን በሚሰጠኝ በክርስቶስ ሁሉን እችላለሁ:: ፊልጵስዩስ 4:13 I can do all this through God who gives me strength.
    [Show full text]
  • Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay Lisa Fish1,2,3, Hoang C.B. Nguyen4, Steven Zhang1,2,3, M
    bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and decay Lisa Fish1,2,3, Hoang C.B. Nguyen4, Steven Zhang1,2,3, Myles Hochman1,2,3, Brian D. Dill5, Henrik Molina5, Hamed S. Najafabadi6,7, Claudio Alarcon8,9, Hani Goodarzi1,2,3* 1 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA 2 Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA 3 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 4 Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 5 Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA 6 Department of Human Genetics, McGill University, Montreal, QC, Canada, H3A 0C7 7 McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada, H3A 0G1 8 Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA 9 Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA *Corresponding author: Hani Goodarzi 600 16th St. San Francisco, CA 94158 Phone: 415-230-5189 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/389213; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Micrornas and Their Processing Factors in Caenorhabditis Elegans and Human Cancers
    From DEPARTMENT OF ONCOLOGY-PATHOLOGY Karolinska Institutet, Stockholm, Sweden MICRORNAS AND THEIR PROCESSING FACTORS IN CAENORHABDITIS ELEGANS AND HUMAN CANCERS Roger Kae-Jia Chang Stockholm 2018 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by AJ E-print AB, 2018 © Roger Kae-Jia Chang, 2018 ISBN 978-91-7676-929-4 MicroRNAs and their processing factors in Caenorhabditis elegans and human cancers THESIS FOR DOCTORAL DEGREE (Ph.D.) By Roger Kae-Jia Chang Principal Supervisor: Opponent: Weng-Onn Lui, Associate Professor Carlos Rovira, Associate Professor Karolinska Institutet Lund University Department of Oncology-Pathology Department of Clinical Sciences Co-supervisor(s): Examination Board: Klas Wiman, Professor Neus Visa, Professor Karolinska Institutet Stockholm University Department of Oncology-Pathology Department of Molecular Biosciences Andrea Hinas, Assistant Professor Uppsala University Department of Cell and Molecular Biology Angelo De Milito, Associate Professor Karolinska Institutet Department of Oncology-Pathology To my friends and family, this would not be possible without you! It is difficult to sum up the contributions all of you made into realizing this thesis. I am grateful for your encouragement and support for allowing me to follow science. To borrow the words of Sir. Isaac Newton: “If I have seen further, it is by standing upon the shoulders of giants”. Thanks for letting my see further than I could imagine. Thanks for letting me stand on your shoulders. ABSTRACT MicroRNAs (miRNAs) are small noncoding RNAs approximately 20-22 nucleotides (nt) long. These small RNAs (sRNAs) was initially discovered in Caenorhabditis elegans (C. elegans), but is conserved in over 50 animal species.
    [Show full text]
  • Regulatory Mechanism of Microrna Expression in Cancer
    International Journal of Molecular Sciences Review Regulatory Mechanism of MicroRNA Expression in Cancer Zainab Ali Syeda 1,2, Siu Semar Saratu’ Langden 1,2, Choijamts Munkhzul 1,2, Mihye Lee 1,2,* and Su Jung Song 1,2,* 1 Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea; [email protected] (Z.A.S.); [email protected] (S.S.S.L.); [email protected] (C.M.) 2 Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea * Correspondence: [email protected] (M.L.); [email protected] (S.J.S.) Received: 4 February 2020; Accepted: 28 February 2020; Published: 3 March 2020 Abstract: Altered gene expression is the primary molecular mechanism responsible for the pathological processes of human diseases, including cancer. MicroRNAs (miRNAs) are virtually involved at the post-transcriptional level and bind to 30 UTR of their target messenger RNA (mRNA) to suppress expression. Dysfunction of miRNAs disturbs expression of oncogenic or tumor-suppressive target genes, which is implicated in cancer pathogenesis. As such, a large number of miRNAs have been found to be downregulated or upregulated in human cancers and to function as oncomiRs or oncosuppressor miRs. Notably, the molecular mechanism underlying the dysregulation of miRNA expression in cancer has been recently uncovered. The genetic deletion or amplification and epigenetic methylation of miRNA genomic loci and the transcription factor-mediated regulation of primary miRNA often alter the landscape of miRNA expression in cancer. Dysregulation of the multiple processing steps in mature miRNA biogenesis can also cause alterations in miRNA expression in cancer. Detailed knowledge of the regulatory mechanism of miRNAs in cancer is essential for understanding its physiological role and the implications of cancer-associated dysfunction and dysregulation.
    [Show full text]
  • Expression Profiling of Human Milk Derived Exosomal Micrornas And
    www.nature.com/scientificreports OPEN Expression profling of human milk derived exosomal microRNAs and their targets in HIV‑1 infected mothers Muhammad Atif Zahoor1,2,8*, Xiao‑Dan Yao1,2, Bethany M. Henrick3,4, Chris P. Verschoor1,2,5, Alash’le Abimiku6,7, Sophia Osawe6 & Kenneth L. Rosenthal1,2* Despite the use of antiretroviral therapy (ART) in HIV‑1 infected mothers approximately 5% of new HIV‑1 infections still occur in breastfed infants annually, which warrants for the development of novel strategies to prevent new HIV‑1 infections in infants. Human milk (HM) exosomes are highly enriched in microRNAs (miRNAs), which play an important role in neonatal immunity. Furthermore, HM exosomes from healthy donors are known to inhibit HIV‑1 infection and transmission; however, the efect of HIV‑1 on HM exosomal miRNA signatures remains unknown. In this study, we used nCounter NanoString technology and investigated miRNAs expression profles in frst week postpartum HM exosomes from HIV‑1 infected and uninfected control mothers (n = 36). Our results indicated that HIV‑1 perturbed the diferential expression patterns of 19 miRNAs (13 upregulated and 6 downregulated) in HIV‑1 infected women compared to healthy controls. DIANA‑miR functional pathway analyses revealed that multiple biological pathways are involved including cell cycle, pathways in cancer, TGF‑β signaling, FoxO signaling, fatty acid biosynthesis, p53 signaling and apoptosis. Moreover, the receiver operating characteristics (ROC) curve analyses of miR‑630 and miR‑ 378g yielded areas under the ROC curves of 0.82 (95% CI 0.67 to 0.82) and 0.83 (95% CI 0.67 to 0.83), respectively highlighting their potential to serve as biomarkers to identify HIV‑1 infection in women.
    [Show full text]
  • DICER1 Gene Mutations in Endocrine Tumors
    25 3 Endocrine-Related M Solarski et al. DICER1 in endocrine tumors 25:3 R197–R208 Cancer REVIEW DICER1 gene mutations in endocrine tumors Michael Solarski1, Fabio Rotondo2, William D Foulkes3,4, John R Priest5, Luis V Syro6, Henriett Butz7, Michael D Cusimano1 and Kalman Kovacs2 1Division of Neurosurgery, Department of Surgery, St. Michael’s Hospital, Toronto, Ontario, Canada 2Division of Pathology, Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada 3Department of Human Genetics, Medicine and Oncology, McGill University, Montreal, Quebec, Canada 4Lady Davis Institute, Jewish General Hospital and Research Institute, McGill University Health Centre, Montreal, Quebec, Canada 5Department of Medicine, Minneapolis, Minnesota, USA 6Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia 7Molecular Medicine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary Correspondence should be addressed to F Rotondo: [email protected] Abstract In this review, the importance of the DICER1 gene in the function of endocrine cells is Key Words discussed. There is conclusive evidence that DICER1 mutations play a crucial role in the f DICER1 development, progression, cell proliferation, therapeutic responsiveness and behavior of f endocrine tumors several endocrine tumors. We review the literature of DICER1 gene mutations in thyroid, f mutation parathyroid, pituitary, pineal gland, endocrine pancreas, paragangliomas, medullary, f neoplasms adrenocortical, ovarian and testicular tumors. Although significant progress has been f pathology made during the last few years, much more work is needed to fully understand the significance of DICER1 mutations. Endocrine-Related Cancer (2018) 25, R197–R208 Introduction In the last few years, the DICER1 gene and its mutations in tumors of various endocrine organs (Hill et al.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Co-Expression Networks Reveal the Tissue-Specific Regulation of Transcription and Splicing
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Method Co-expression networks reveal the tissue-specific regulation of transcription and splicing Ashis Saha,1 Yungil Kim,1,6 Ariel D.H. Gewirtz,2,6 Brian Jo,2 Chuan Gao,3 Ian C. McDowell,4 The GTEx Consortium,7 Barbara E. Engelhardt,5 and Alexis Battle1 1Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA; 2Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08540, USA; 3Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA; 4Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA; 5Department of Computer Science and Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey 08540, USA Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the reg- ulation of splicing and transcription.
    [Show full text]