Committee for Veterinary Medicinal Products

Total Page:16

File Type:pdf, Size:1020Kb

Load more

The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/MRL/447/98-FINAL June 1998 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS PHYTOMENADIONE (VITAMIN K1) AND MENADIONE (VITAMIN K3) SUMMARY REPORT 1. The term vitamin K is used for a range of naphthoquinone compounds which are necessary for the biosynthesis of blood clotting factors. Vitamin K activity is associated with at least two distinct natural substances designated as phytomenadione (vitamin K1) and vitamin K2. Phytomenadione (CAS No. 84-80-0), is 2-methyl-1, 4-naphthoquinone; vitamin K2 represents a series of compounds, menaquinones, in which the phytyl side chain of phytomenadione has been replaced by a side chain built up of 2 to 13 phenyl units. The menaquinones are synthesised by Gram-positive bacteria in the gastrointestinal tract. The phytomenadione (the major dietary source), occurs in plants and is the only natural vitamin K available for therapeutic use. Green leafy plants and cured roughage are excellent sources of phytomenadione. Fish meal and liver contain significant amounts. Menadione (CAS No. 58-27-5) (2-methyl-1,4-naphthoquinone) is the synthetic form of vitamin K. In the body menaquinones are partly formed from menadione. Menadione is also a metabolisation product of phytomenadione formed by bacteria in the gastrointestinal tract. Menadione, on a molar basis, at least as active as phytomenadione. In veterinary medicine, vitamin K preparations are obtained from synthetic and natural sources. Vitamin K compounds are used in the treatment and prevention of haemorrhage associated with vitamin K deficiency and also as antagonists for anticoagulant poisoning (e.g. rodenticide toxicity and sweet clover poisoning). Phytomenadione as a prophylactic agent, is given intravenously, intramuscularly and orally at doses of 1 mg/kg bw/day in cattle and sheep and at doses of 2 to 4 g/l water or 0.5 to 1 mg/kg in the diet of chickens. In the treatment of haemorrhagic disorders phytomenadione may be given intravenously and orally at doses of 0.5 to 2.5 mg/kg bw per day in cattle, sheep, horses and swine. Menadione may be used intravenously, intramuscularly and orally at doses of 1 to 2 mg/kg bw per day in cattle, sheep, horses, and swine. Likewise menadione is used for treatment of chickens at doses of 8 mg/l water. In humans, phytomenadione may be given orally and parenterally at doses up to 25 mg per day and a water soluble derivative of menadione at oral doses in a range of 10 to 40 mg per day. 2. Vitamin K is a cofactor in the post-ribosomal synthesis of clotting factors including II (prothrombin), VII (proconvertin), IX (plasma thromboplastin component), and X (Stuart factor) factors as well as of proteins C and S that are involved in the production and inhibition of thrombin. Vitamin K acts on all clotting factor precursors to convert glutamyl residues into ?-carboxyglutamyl residues. During this process of ?-carboxylation, phytomenadione is converted to phytomenadione-2,3 epoxide, an inactive metabolite. There exists evidence that a number of other proteins containing ?-carboxyglutamic acid require vitamin K for their biosynthesis, notably osteocalcin in bone. 3. Vitamin K is synthesised and absorbed in sufficient amounts in the digestive tract of all animal species. It is subsequently absorbed in the small intestine of ruminants and may be acquired by coprophagy or absorption from the lower intestinal tract in other mammals. 7 Westferry Circus, Canary Wharf, London E14 4HB, UK Switchboard: (+44-171) 418 8400 Fax: (+44-171) 418 8447 E_Mail: [email protected] http://www.eudra.org/emea.html ãEMEA 1998 Reproduction and/or distribution of this document is authorised for non commercial purposes only provided the EMEA is acknowledged Phytomenadione is reasonably well absorbed in the proximal small intestine, but only poorly from the colon. Like all fat-soluble vitamins, its absorption in substantial amounts depends upon normal production of bile acids and pancreatic enzymes. Phytomenadione is absorbed only if bile salts are present and is transported via the thoracic lymph duct. Phytomenadione and menaquinones are absorbed almost entirely by way of the lymph; menadione and its water-soluble derivatives enter the blood stream directly. Phytomenadione is absorbed by an energy-dependent, saturable process in proximal portions of the small intestine. Menaquinones and menadione are absorbed by diffusion in the distal portions of the small intestine and colon. In humans, the half-life of phytomenadione after intravenous administration is 1.4 to 2.2 hours. The bioavailability of phytomenadione given orally at a dose of 10 mg is 10 to 63% and leads to a maximum plasma concentration of 115 to 407 ng/ml. The phytomenadione half-life in plasma after oral use is 1 to 4 hours and its volume of distribution is 0.07 l/kg. Phytomenadione is rapidly metabolised to more polar metabolites that are excreted in the bile and urine. The major urinary metabolites result from shortening of the side chain to five or seven carbon atoms, yielding carboxylic acids that are conjugated with glucuronate prior excretion. Menadione is apparently reduced to the diol (hydroquinone) form and excreted as glucuronide and sulphate conjugates. There is little storage of vitamin K in the body and there appears to be a fairly rapid turnover. The limited stores of the vitamin K present in tissue are slowly broken down. 4. Acute dose toxicity studies were performed with mice and rats. In mice, the subcutaneous and oral LD50 values were higher than 1 g/kg bw and 25 g/kg bw for phytomenadione and 138 mg/kg bw and 500 mg/kg bw for menadione, respectively. Thus menadione can be considered as moderately toxic and phytomenadione as practically nontoxic. In the rat, the intravenous LD50 value for menadione was 800 mg/kg bw. The administration of large doses of menadione and its derivatives to animals resulted in the production of anaemia, polycythemia, splenomegaly, renal and hepatic damage, and death. 5. While no studies on repeated dose toxicity, reproductive toxicity including embryotoxicity/foetotoxicity, mutagenicity and carcinogenicity where available, submission of such information was not considered necessary since vitamin K has a long history of safe use in human and veterinary medicine. 6. No tolerance studies in target species were available. Phytomenadione and menaquinones are nontoxic to animals. In horses, severe adverse effects were occasionally observed when menadione was administered intravenously (rate of intravenous administration and the composition of preparation not stated). Depression, anorexia, muscle tremors, colics, renal impairment, increased blood urea nitrogen and serum creatinine concentrations with increased kidney volume were presented. Menadione is considered nephrotoxic at dosage in a range of 1 to 2.5 g. 7. No specific studies on immunotoxicity and other effects were provided. 8. In man, rapid intravenous administration of phytomenadione produced flushing, dyspnoea, chest pains, cardiovascular collapse, and rarely death. Whether these reactions were due to the vitamin itself or to the agents used to disperse and emulsify the preparation is not clear. Menadione and its derivatives have been implicated in producing haemolytic anaemia, hyperbilirubinemia, and kernicterus in the newborn, especially premature infants. Phytomenadione has only rarely caused this. Menadione also can induce haemolysis in individuals who are deficient in glucose-6-phosphate dehydrogenase. 2/3 ãEMEA 1998 In patients who have severe hepatic disease, the administration of large doses of phytomenadione or menadione may further depress function of the liver. 9. Reports of the Scientific Committee for Food (EU) in 1992 indicate that is not easy to estimate human requirements because of the difficulty of inducing vitamin K deficiency in normal subjects. In one experiment, young healthy subjects consumed a diet, from which foods rich in vitamin K had been removed, giving approximately 50 µg/day of phytomenadione. Blood clotting appeared normal, but there were signs that prothrombin biosynthesis was not optimal, and there was a decrease in ?- carboxyglutamic acid excretion. The Committee concluded that the requirement for dietary vitamin K is about 1 µg/kg bw/day. On the basis of the daily recommended intake, the safety margin is large. Side effects of vitamin K are rare. Moreover, the minimum dose responsible for an oral adverse effect is unknown. 10. No residue depletion studies in target species were provided. The possibility of residues in meat and milk is considered to be of no concern due to the fact that both natural and synthetic forms of vitamin K are rapidly metabolised and largely excreted as glucuronide or sulphate conjugated. Vitamin K has a short elimination half-life and a low volume of distribution. Furthermore, it should be noted that vitamin K (phytomenadione and menaquinones) is synthesised in the digestive tract. In treated animals tissue concentrations can be expected in the range of concentrations naturally occurring in food derived from plant or fish. 11. No routine analytical method for the determination of vitamin K in tissues of target animals was provided. This information was not considered necessary. Conclusions and recommendation Having considered the criteria laid down by the Committee for the inclusion of substances in Annex II to Council Regulation (EEC) No. 2377/90 and in particular that: · phytomenadione and menadione are endogenously available substances, · phytomenadione is a normal component in the diet of humans and animals, · phytomenadione and menadione are used in veterinary medicine only for short-term therapy in individual animals, · the treated animals are unlikely to be sent for slaughter during or immediately after treatment, · the pharmacokinetic data indicate that the substances are largely metabolised and rapidly excreted; the Committee considers that there is no need to establish an MRL for phytomenadione and menadione and recommends their inclusion in Annex II of Council Regulation (EEC) No.
Recommended publications
  • Routine Administration of Vitamin K1 Prophylaxis to the Newborn

    Routine Administration of Vitamin K1 Prophylaxis to the Newborn

    Routine Administration of Vitamin K1 Prophylaxis to the Newborn Practice Resource for Health Care Providers July 2016 Practice Resource Guide: ROUTINE ADMINISTRATION OF VITAMIN K1 PROPHYLAXIS TO THE NEWBORN The information attached is the summary of the position statement and the recommendations from the recent CPS evidence-based guideline for routine intramuscular administration of Vitamin K1 prophylaxis to the newborn*: www.cps.ca/documents/position/administration-vitamin-K-newborns Summary Vitamin K deficiency bleeding or VKDB (formerly known as hemorrhagic disease of the newborn or HDNB) is significant bleeding which results from the newborn’s inability to sufficiently activate vitamin K-dependent coagulation factors because of a relative endogenous and exogenous deficiency of vitamin K.1 There are three types of VKDB: 1. Early onset VKDB, which appears within the first 24 hours of life, is associated with maternal medications that interfere with vitamin K metabolism. These include some anticonvulsants, cephalosporins, tuberculostatics and anticoagulants. 2. Classic VKDB appears within the first week of life, but is rarely seen after the administration of vitamin K. 3. Late VKDB appears within three to eight weeks of age and is associated with inadequate intake of vitamin K (exclusive breastfeeding without vitamin K prophylaxis) or malabsorption. The incidence of late VKDB has increased in countries that implemented oral vitamin K rather than intramuscular administration. There are three methods of Vitamin K1 administration: intramuscular, oral and intravenous. The Canadian Paediatric Society (2016)2 and the American Academy of Pediatrics (2009)3 recommend the intramuscular route of vitamin K administration. The intramuscular route of Vitamin K1 has been the preferred method in North America due to its efficacy and high compliance rate.
  • Dispensing of Vitamin Products by Retail Pharmacies in South Africa: Implications for Dietitians

    Dispensing of Vitamin Products by Retail Pharmacies in South Africa: Implications for Dietitians

    South African Journal of Clinical Nutrition 2016; 29(4):133–138 http://dx.doi.org/10.1080/16070658.2016.1219468 SAJCN ISSN 1607-0658 EISSN 2221-1268 Open Access article distributed under the terms of the © 2016 The Author(s) Creative Commons License [CC BY-NC 3.0] http://creativecommons.org/licenses/by-nc/3.0 RESEARCH Dispensing of vitamin products by retail pharmacies in South Africa: Implications for dietitians Ilse Trutera* and Liana Steenkampb a Department of Pharmacy, Drug Utilisation Research Unit (DURU), Nelson Mandela Metropolitan University, Port Elizabeth, South Africa b HIV & AIDS Research Unit, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa *Corresponding author, email: [email protected] Objective: The objective of this study was to analyse the dispensing patterns of vitamins (Anatomical Therapeutic Chemical (ATC) group A11) over a one-year period in a group of community pharmacies in South Africa. Design and setting: A retrospective drug utilisation study was conducted on community pharmacy electronic dispensing records in South Africa recorded in 2013. Outcome measures: All products for ATC subgroup A11 were extracted and analysed. Results: A total of 164 233 vitamin products were dispensed to 84 805 patients (62.64% female patients). Males received on average 2.09 (SD = 2.63) vitamin products per year, compared to 1.84 (SD = 2.13) products for females. Ergocalciferol (A11CC01) was the most often dispensed (37.48% of all vitamin products), followed by plain Vitamin B-complex products (A11EA00) accounting for 32.77%. Ergocalciferol (vitamin D2) is only available on prescription (50 000 IU tablets or 50 000 IU/ml oily drops) in South Africa.
  • Vitamin K: Double Bonds Beyond Coagulation Insights Into Differences Between Vitamin K1 and K2 in Health and Disease

    Vitamin K: Double Bonds Beyond Coagulation Insights Into Differences Between Vitamin K1 and K2 in Health and Disease

    International Journal of Molecular Sciences Review Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease Maurice Halder 1,†, Ploingarm Petsophonsakul 2,†, Asim Cengiz Akbulut 2,†, Angelina Pavlic 2,† , Frode Bohan 3, Eric Anderson 3, Katarzyna Maresz 4, Rafael Kramann 1 and Leon Schurgers 1,2,* 1 Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany; [email protected] (M.H.); [email protected] (R.K.) 2 Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands; [email protected] (P.P.); [email protected] (A.C.A.); [email protected] (A.P.) 3 NattoPharma ASA, 0283 Oslo, Norway; [email protected] (F.B.); [email protected] (E.A.) 4 International Science & Health Foundation, 30-134 Krakow, Poland; [email protected] * Correspondence: [email protected]; Tel.: +31-43-3881680; Fax: +31-43-3884159 † These authors contributed equally to this work. Received: 24 January 2019; Accepted: 16 February 2019; Published: 19 February 2019 Abstract: Vitamin K is an essential bioactive compound required for optimal body function. Vitamin K can be present in various isoforms, distinguishable by two main structures, namely, phylloquinone (K1) and menaquinones (K2). The difference in structure between K1 and K2 is seen in different absorption rates, tissue distribution, and bioavailability. Although differing in structure, both act as cofactor for the enzyme gamma-glutamylcarboxylase, encompassing both hepatic and extrahepatic activity. Only carboxylated proteins are active and promote a health profile like hemostasis. Furthermore, vitamin K2 in the form of MK-7 has been shown to be a bioactive compound in regulating osteoporosis, atherosclerosis, cancer and inflammatory diseases without risk of negative side effects or overdosing.
  • An Abstract of the Thesis Of

    An Abstract of the Thesis Of

    AN ABSTRACT OF THE THESIS OF Larry Stanford Merrifield for the M.S. in Food Science (Name) (Degree) (Major) Date thesis is presented June 26, 1964 Titie FACTORS AFFECTING THE ANTIMICROBIAL ACTIVITY OF VITAMIN K 5 Abstract approved (M^jor Tp&Sfesso/) Vitamin K, 4-amino-2-methyl- 1-naphthol hydrochloride, a 5 water soluble analog of vitamin K has been shown to possess an anti- microbial activity toward many bacteria, molds, and yeast. Much of the work reported in the literature is on its use as a food preserva- tive, and it was the purpose of this study to investigate some of the factors which might affect the antimicrobial activity of vitamin K in order to add insight into its more effective use as a food preserva- tive. Pure cultures of Escherichia coli, Bacillus subtilis, Proteus vulgaris, Staphlococcus aureus, and Pseudomonas fluorescens were utilized. The effect of the method of application of vitamin K on Escherichia coli; the effect of purity of vitamin K against Escherichia coli; the bactericidal concentrations required for Escherichia coli, Bacillus subtilis, Proteus vulgaris, Staphlococcus aureus, and Pseudomonas fluorescens; the effect of an absence of oxygen; the effect of contact time with Escherichia coli; the effect of initial count/ml of Escherichia coli; and the synergistic action in combination with propylene glycol were studied. The results demonstrated that air oxidation of vitamin K was 5 necessary to obtain maximum inhibitory activity against Escherichia coli. The use of white, crystalline vitamin K synthesized in the laboratory, as compared to partially oxidized commercial prepara- tions, gave better results against Escherichia coli.
  • Optimal Foods

    Optimal Foods

    Optimal Foods 1. Almonds: high in monounsaturated and polyunsaturated fats, with 20% of calories coming from protein and dietary fiber. Nutrients include potassium, magnesium, calcium, iron, zinc, vitamin E and an antioxidant flavonoid called amygdlin also known as laetrile. 2. Barley: Like oat bran it is high in beta-glucan fiber which helps to lower cholesterol. Nutrients include copper, magnesium, phosphorous and niacin. 3. Berries : The darker the berry the higher in anti-oxidants. Nutritionally they are an excellent source of flavonoids, especially anthocyanidins, vitamin C and both soluble and insoluble fiber. 4. Brussels Sprouts : Similar to broccoli, and a member of the cabbage family, it contains cancer fighting glucosinolates. Nutritionally it is an excellent source of vitamin C and K, the B vitamins, beta-carotene, potassium and dietary fiber. 5. Carrots: It contains the highest source of proviatamin A carotenes as well as vitamin K, biotin, vitamin C, B6, potassium, thiamine and fiber. 6. Dark Chocolate: It is rich in the flavonoids, similar to those found in berries and apples, that are more easily absorbed than in other foods. It also provides an amino acid called arginine that helps blood vessels to dilate hence regulating blood flow and helping to lower blood pressure. Choose high-quality semisweet dark chocolate with the highest cocoa content that appeals to your taste buds. 7. Dark leafy greens : Kale, arugula, spinach, mustard greens, chard, collards, etc: low calorie, anti-oxidant dense food with carotenes, vitamin C, folic acid, manganese, copper, vitamin E, copper, vitamin B6, potassium, calcium, iron and dietary fiber. Kale is a particularly excellent bioavailable source of calcium while spinach is not.
  • (12) United States Patent (10) Patent No.: US 9,149,560 B2 Askari Et Al

    (12) United States Patent (10) Patent No.: US 9,149,560 B2 Askari Et Al

    USOO9149560B2 (12) United States Patent (10) Patent No.: US 9,149,560 B2 Askari et al. (45) Date of Patent: Oct. 6, 2015 (54) SOLID POLYGLYCOL-BASED 6,149,931 A 11/2000 Schwartz et al. BOCOMPATIBLE PRE-FORMULATION 6,153,211 A 11/2000 Hubbell et al. 6,180,687 B1 1/2001 Hammer et al. 6,207,772 B1 3/2001 Hatsuda et al. (71) Applicant: Medicus Biosciences LLC, San Jose, 6,312,725 B1 1 1/2001 Wallace et al. CA (US) 6,458,889 B1 10/2002 Trollsas et al. 6,475,508 B1 1 1/2002 Schwartz et al. (72) Inventors: Syed H. Askari, San Jose, CA (US); 6,547,714 B1 4/2003 Dailey 6,566,406 B1 5/2003 Pathak et al. Yeon S. Choi, Emeryville, CA (US); 6,605,294 B2 8/2003 Sawhney Paul Yu Jen Wan, Norco, CA (US) 6,624,245 B2 9, 2003 Wallace et al. 6,632.457 B1 10/2003 Sawhney (73) Assignee: Medicus Biosciences LLC, San Jose, 6,703,037 B1 3/2004 Hubbell et al. CA (US) 6,703,378 B1 3/2004 Kunzler et al. 6,818,018 B1 1 1/2004 Sawhney 7,009,343 B2 3/2006 Lim et al. (*) Notice: Subject to any disclaimer, the term of this 7,255,874 B1 8, 2007 Bobo et al. patent is extended or adjusted under 35 7,332,566 B2 2/2008 Pathak et al. U.S.C. 154(b) by 0 days. 7,553,810 B2 6/2009 Gong et al.
  • The Potential Protective Role of Vitamin K in Diabetic Neuropathy

    The Potential Protective Role of Vitamin K in Diabetic Neuropathy

    VITAMINS The potential protective role of vitamin K in diabetic neuropathy DILIP MEHTA Viridis Biopharma 6/10 Jogani Industrial Complex ew cases of diabetes are symptomatic pain relief (3-5). V. N. Purav Marg, Chunabhatti increasing worldwide at a rapid Mumbai 400022, India The etiopathology of peripheral pace, with the total number of neuropathy is poorly understood and many [email protected] people with diabetes was projected factors, including dietary deficiencies, may www.viridisbiopharma.com Nto rise from 171 million in 2000 to 366 million contribute to the clinical manifestation of the in 2030 – an increase of nearly 200 million in condition. Deficiency of vitamin B12 (also only three decades. There are more cases of known as cobalamin), which results in a lack diabetes in women and urban populations, of a related compound, methylcobalamin, is with diabetes in developing countries projected manifested by megaloblastic anemia, and to double in the coming years (1). has been associated with significant Based on reports from the Centers for neurological pathology, especially peripheral Disease Control and Prevention, type 2 neuropathy (6-8). Vitamin B12 is also diabetes dult onset diabetes affects associated with the onset of diabetic approximately 9.3% of the general neuropathy. In patients with diabetic population in the United States in contrast to neuropathy, vitamin B12 deficiency may be 25.9% among those 65 years or older (2). aggravated by the use of antidiabetic agents Diabetes mellitus accounts for 90% of the such as metformin (9-11). Even short-term cases of diabetes patients (3,4). treatment with metformin causes a decrease The prevalence of type 2 diabetes in serum cobalamin, folic acid and an increases with age, higher then 25 body increase in homocysteine, which leads to mass index and the presence of the disease peripheral neuropathy in patients with in family history.
  • Dietary Reference Intakes (Dris): Recommended Dietary Allowances and Adequate Intakes, Vitamins Food and Nutrition Board, Institute of Medicine, National Academies

    Dietary Reference Intakes (Dris): Recommended Dietary Allowances and Adequate Intakes, Vitamins Food and Nutrition Board, Institute of Medicine, National Academies

    Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Vitamins Food and Nutrition Board, Institute of Medicine, National Academies Life Stage Vitamin A Vitamin C Vitamin D Vitamin E Vitamin K Thiamin Riboflavin Niacin Vitamin B6 Folate Vitamin B12 Pantothenic Biotin Choline Group (µg/d)a (mg/d) (µg/d)b,c (mg/d) d (µg/d) (mg/d) (mg/d) (mg/d)e (mg/d) (µg/d)f (µg/d) Acid (mg/d) (µg/d) (mg/d)g Infants 0 to 6 mo 400* 40* 10 4* 2.0* 0.2* 0.3* 2* 0.1* 65* 0.4* 1.7* 5* 125* 6 to 12 mo 500* 50* 10 5* 2.5* 0.3* 0.4* 4* 0.3* 80* 0.5* 1.8* 6* 150* Children 1–3 y 300 15 15 6 30* 0.5 0.5 6 0.5 150 0.9 2* 8* 200* 4–8 y 400 25 15 7 55* 0.6 0.6 8 0.6 200 1.2 3* 12* 250* Males 9–13 y 600 45 15 11 60* 0.9 0.9 12 1.0 300 1.8 4* 20* 375* 14–18 y 900 75 15 15 75* 1.2 1.3 16 1.3 400 2.4 5* 25* 550* 19–30 y 900 90 15 15 120* 1.2 1.3 16 1.3 400 2.4 5* 30* 550* 31–50 y 900 90 15 15 120* 1.2 1.3 16 1.3 400 2.4 5* 30* 550* 51–70 y 900 90 15 15 120* 1.2 1.3 16 1.7 400 2.4h 5* 30* 550* > 70 y 900 90 20 15 120* 1.2 1.3 16 1.7 400 2.4h 5* 30* 550* Females 9–13 y 600 45 15 11 60* 0.9 0.9 12 1.0 300 1.8 4* 20* 375* 14–18 y 700 65 15 15 75* 1.0 1.0 14 1.2 400i 2.4 5* 25* 400* 19–30 y 700 75 15 15 90* 1.1 1.1 14 1.3 400i 2.4 5* 30* 425* 31–50 y 700 75 15 15 90* 1.1 1.1 14 1.3 400i 2.4 5* 30* 425* 51–70 y 700 75 15 15 90* 1.1 1.1 14 1.5 400 2.4h 5* 30* 425* > 70 y 700 75 20 15 90* 1.1 1.1 14 1.5 400 2.4h 5* 30* 425* Pregnancy 14–18 y 750 80 15 15 75* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* 19–30 y 770 85 15 15 90* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* 31–50 y 770 85 15 15 90* 1.4 1.4 18 1.9 600j 2.6 6* 30* 450* Lactation 14–18 y 1,200 115 15 19 75* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* 19–30 y 1,300 120 15 19 90* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* 31–50 y 1,300 120 15 19 90* 1.4 1.6 17 2.0 500 2.8 7* 35* 550* NOTE: This table (taken from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDAs) in bold type and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*).
  • Stability of Vitamins in Pelleting

    Stability of Vitamins in Pelleting

    Stability of vitamins in pelleting BY N.E. WARD, PHD, MSC REVIEWED AND EDITED BY CHARLES STARK, ADAM FAHRENHOLZ, AND CASSANDRA JONES with formulation changes from the same supplier. elleting of animal feeds has been practiced for P For these reasons, historical data must be closely decades. During the pelleting process, an increased scrutinized. processing temperature is associated with the production of more tonnes of feed per hour with Vitamin stability characteristics improved pellet durability. If conditions are harsh Inherent differences exist in the stability of enough, however, reduced starch (Brown, 1996) unformulated vitamins (i.e., non-commercial forms; and protein (Batterham, et al., 1993) utilization can Baker, 1995). Thus, while heat may be especially occur. destructive to vitamin A, it has little consequence on niacin (Table 16-1). Vitamins for use in feeds In addition, the moisture, heat, friction and shear of and foods are formulated to counter anticipated pelleting can compromise the integrity of added stresses, and formulations are intended to act as a vitamins (Jones, 1986; Gadient, 1986) and enzymes buffer between the vitamin and the destructive (Nunes, 1993; Eeckhout, 1999). Taken that the component. various feed additives are inherently vulnerable to heat and moisture, this is not a minor concern. Along with the unique chemical structure and Thus, it’s important to understand the conditions characteristics of each vitamin, the anticipated that might decrease the efficacy of enzymes and stress dictates the type of stabilization or vitamins in a processed feed. formulation needed. For example, vitamin A exists with four double bonds and one hydroxyl group (Adams, 1978).
  • Mega-Dose Vitamin C As Therapy for Human Cancer?

    Mega-Dose Vitamin C As Therapy for Human Cancer?

    possible alternative explanation for the positive outcome.... LETTER Finally, these case reports omit the number of patients who received high-dose intravenous vitamin C therapy with no effect. Because these cases were collected over many years Mega-dose vitamin C as therapy for from several institutions, this number may be quite large and human cancer? the overall response rate quite low’’ (5). Frei and Lawson (1) also refer to the ‘‘remarkable tolerance for high-dose i.v. vitamin C’’ in a phase I trial in selected cancer patients (12) Frei and Lawson (1) paint a rosy picture of the potential of but fail to mention the conclusion of this trial: ‘‘No patient vitamin C as therapy for human cancer. The authors are lo- experienced an objective anticancer response . .’’ (12). cated at the Linus Pauling Institute and therefore are in a It is possible that ‘‘the promise of ascorbic acid in the special position to revitalize the interest in vitamin C pro- treatment of advanced cancer may lie in combination with moted by the articles of Cameron and Pauling in PNAS 30 cytotoxic agents’’ (12). As long as this has not been tested, we years ago; however, the evidence that vitamin C could help should try to avoid a new hype of vitamin C as cancer treat- human cancer patients is still thin. ment by pointing out, especially in PNAS, the limitations of 1. Chen et al. (2) find that megadose i.p. vitamin C results in an the available data. Ϸ2-fold growth decrease of a human (Ovcar 5), a mouse Piet Borst1 (PanO2), and a rat (9L) tumor xenografted into immuno- compromised mice.
  • US5116406.Pdf

    US5116406.Pdf

    |||||||||||||| US005 16406A United States Patent (19) 11) Patent Number: 5,116,406 Hyeon (45) Date of Patent: May 26, 1992 (54) PLANT GROWTH REGULATING 4.799,950 l/1989 Suzuki et al. ........................... 71/89 COMPOSITION FOREIGN PATENT DOCUMENTS 75 Inventor: Suong B. Hyeon, Urawa, Japan 61-215305(A) 3/1985 Japan. (73) Assignee: Mitsubishi Gas Chemical Company, 60-72802(A) 4/1985 Japan. Inc., Tokyo, Japan 61-212502(A) 9/1986 Japan. 62-190102(A) 8/1987 Japan . (21) Appl. No.: 540,062 2059412A 8/1980 United Kingdom . 22 Filed: Jun. 19, 1990 Primary Examiner-Glennon H. Hollrah Assistant Examiner-John D. Pak (30) Foreign Application Priority Data Attorney, Agent, or Firm-Armstrong, Nikaido, Jun. 20, 1989 (JP) Japan .................................. - 155629 Marmelstein, Kubovcik & Murray 5) Int. C. ...................... A01N 41/04; AOlN 33/12 (57) ABSTRACT 52 U.S. Cl. .......................................... 71/103; 71/77; Disclosed is a plant growth regulating composition, 71/92; 71/121; 71/123 which comprises containing at least one of choline salts 58) Field of Search ..................... 71/121, 123, 77,92, and compounds having vitamin K3 activity as active 71/103 ingredients and a plant growth regulating composition, (56) References Cited and comprises containing at least one of choline salt, U.S. PATENT DOCUMENTS compounds having vitamin K3 activity and compounds 4.309.205 l/1982 Kessler .................................. 7 1/21 having vitamin B activity as active ingredients. 4.337.077 1/1982 Rutherford ... ... 71/9 4,764.20 8/1988 lino et al. ................................ 7/77 3 Claims, No Drawings 5,116,406 1 2 menadiol dibutyrate. The above salts are preferably PLANT GROWTH REGULATING COMPOSITION sodium salts and potassium salts.
  • Estonian Statistics on Medicines 2016 1/41

    Estonian Statistics on Medicines 2016 1/41

    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole