TPSS-2015-Vol8n1 194-198Heiser
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BROWN ALGAE [147 Species] (
CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck -
Echinomermella Matsi (Nematoda)
MARINE ECOLOGY PROGRESS SERIES Published March 23 Mar. Ecol. Prog. Ser. Population reductions of Strongylocentrotus droebachiensis (Echinodermata)in Norway and the distribution of its endoparasite Echinomermella matsi (Nematoda) A. Skadsheim, H. Christie, H. P. Leinaas Norwegian Institute for Nature Research (NINA), Box 1037 Blindern. N-0315 Oslo. Norway ABSTRACT: Observations of sea urchin Strongylocentrotus droebachiensis (0.F. Miiller) mass mortal- ity at Vega island In mid Norway, and reduced sea urchin density in another area 280 km (aerial line) to the south, initiated a more extensive survey of sea urchin and kelp Laminaria hyperborea (Gunn.) Foslie forest distribution along 700 km of coastline. Records of the distribution and prevalence of the nematode Echinomermella matsi Jones & Hagen, 1987, an endoparasite of S. droebachiensis, were also included as the parasite has been postulated to cause sea UI-chinmass mortality. Sampling was con- centrated in 5 areas of coastline along mid and northern Norway. Each area was studied along a wave exposure gradient. Old kelp forests have persisted along the outermost exposed parts of the coastline despite the 20 yr population outbreak of sea urchins. Inshore of the exposed kelp zone and towards the mainland, sea urchin dominated barren grounds still persisted. The distribution and abundance of S. droebachiensis in the southernmost area (Fraya) was greatly reduced, and expansion of kelp into for- mer barren grounds resulted. Reduced numbers of sea urchins and some macroalgal regrowth also occurred in the 2 central areas 140 and 280 km north of Fraya, whilst high population densities of small sized S. droebachiensis on 'barrens' still dominated the inner zone in the 2 northern areas. -
Research Article Analysis by Vibrational Spectroscopy of Seaweed Polysaccharides with Potential Use in Food, Pharmaceutical, and Cosmetic Industries
Hindawi Publishing Corporation International Journal of Carbohydrate Chemistry Volume 2013, Article ID 537202, 7 pages http://dx.doi.org/10.1155/2013/537202 Research Article Analysis by Vibrational Spectroscopy of Seaweed Polysaccharides with Potential Use in Food, Pharmaceutical, and Cosmetic Industries Leonel Pereira,1 Saly F. Gheda,2 and Paulo J. A. Ribeiro-Claro3 1 IMAR-CMA, Department of Life Sciences, FCTUC, University of Coimbra, 3004-516 Coimbra, Portugal 2 Phycology Lab., Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt 3 Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal Correspondence should be addressed to Leonel Pereira; [email protected] Received 14 November 2012; Accepted 8 February 2013 AcademicEditor:OttoHolst Copyright © 2013 Leonel Pereira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polysaccharides present in several seaweeds (Kappaphycus alvarezii, Calliblepharis jubata,andChondrus crispus—Gigartinales, Rhodophyta; Gelidium corneum and Pterocladiella capillacea—Gelidiales, Rhodophyta; Laurencia obtusa—Ceramiales, Rhodophyta; Himanthalia elongata, Undaria pinnatifida, Saccorhiza polyschides, Sargassum vulgare,andPadina pavonica— Phaeophyceae, Ochrophyta) are analyzed by spectroscopic techniques. The nature of the polysaccharides (with extraction and without any type of extraction) present in these seaweeds was determined with FTIR-ATR and FT-Raman analysis of extracted phycocolloids and ground dry seaweed. 1. Introduction The different phycocolloids used in food industry as nat- ural additives are (European codes of phycocolloids) Many species of seaweed (marine macroalgae) are used as food and they have also found use in traditional medicine (i) alginic acid—E400, because of their perceived health benefits. -
Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report. -
Cutleriaceae, Phaeophyceae)Pre 651 241..248
bs_bs_banner Phycological Research 2012; 60: 241–248 Taxonomic revision of the genus Cutleria proposing a new genus Mutimo to accommodate M. cylindricus (Cutleriaceae, Phaeophyceae)pre_651 241..248 Hiroshi Kawai,1* Keita Kogishi,1 Takeaki Hanyuda1 and Taiju Kitayama2 1Kobe University Research Center for Inland Seas, Kobe, and 2Department of Botany, National Museum of Nature and Science, Amakubo, Tsukuba, Japan branched, compressed or cylindrical thalli (e.g., SUMMARY C. chilosa (Falkenberg) P.C. Silva, C. compressa Kützing, C. cylindrica Okamura and C. multifida Molecular phylogenetic analyses of representative Cut- (Turner) Greville); (ii) flat, fan-shaped thalli (e.g. C. leria species using mitochondrial cox3, chloroplast adspersa (Mertens ex Roth) De Notaris, C. hancockii psaA, psbA and rbcL gene sequences showed that E.Y. Dawson, C. kraftii Huisman and C. mollis Allender C. cylindrica Okamura was not included in the clade et Kraft). However, only a sporophytic generation is composed of other Cutleria species including the gen- reported for some taxa and the nature of their gameto- eritype C. multifida (Turner) Greville and the related phytic (erect) thalli are unclear (e.g. C. canariensis taxon Zanardinia typus (Nardo) P.C. Silva. Instead, (Sauvageau) I.A. Abbott et J.M. Huisman and C. irregu- C. cylindrica was sister to the clade composed of the laris I.A. Abbott & Huisman). Cutleria species typically two genera excluding C. cylindrica. Cutleria spp. have show a heteromorphic life history alternating between heteromophic life histories and their gametophytes are relatively large dioecious gametophytes of trichothallic rather diverse in gross morphology, from compressed or growth and small crustose sporophytes, considered cylindrical-branched to fan-shaped, whereas the sporo- characteristic of the order. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
High Prevalence of Infection by Endophytic Brown Algae in Populations of Laminariaspp
I MARINE ECOLOGY PROGRESS SERIES Vol. 146: 135-143. 1997 Published January 30 Mar Ecol Prog Ser l High prevalence of infection by endophytic brown algae in populations of Laminaria spp. (Phaeophyceae) Elin Ellertsdottir, Akira F. Peters * Institut fur Meereskunde, Abteilung Meeresbotanik and AG Marine Pathology, Dusternbrooker Weg 20, D-24105 Kiel, Germany ABSTRACT: The occurrence of mlcroscoplc algae that are endophytes and potential pathogens of kelps was quantified during 1994 in wild populations of Laminaria saccharina, L. hyperborea and L. digitata at Helgoland, North Sea. Sampling was designed to enable analysis of the influence of 4 fixed factors: species, date, wave exposure, and depth. Microscopic examination of, in total. 1224 thalli showed that the prevalence of infection by endophytic algae was 85%, much higher than was inferred by gross lesions alone. One tenth of the hosts, mostly L. saccharina, showed severe morphological changes, such as distorted stipes or a crippled lamina. One third showed weaker symptoms of endo- phyte disease, such as dark spots on the lamina or warts on the stipe. In most infected thalli, the infec- tion was not evident macroscopically. Prevalence was high throughout the year with a minimum in spring. At a more exposed site, prevalence was higher and disease symptoms stronger than at a shel- tered locality Disease symptoms were more severe in shallower than in deeper water. Endophytes, mostly brown algae, were repeatedly isolated and identified in laboratory cultures. Endophytes were not strictly host-specific, but L. saccharina was predominantly infected by Laminarionema elsbetiae, recently detected at Helgoland. This is the first epidemiological study comparing the prevalence and effects of kelp endophytes in different hosts at the same locality. -
The Classification of Lower Organisms
The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6. -
2013 Mystic, CT
Table of Contents & Acknowledgements Welcome note ……………………………………………………………..….. 2 General program …………………………………………………………..….. 3-7 Poster presentation summary …………………………………..……………… 8-10 Oral abstracts (in order of presentation) …….………………………………… 11-25 Poster abstracts (numbered presentation boards) ……..……….……………… 26-38 Biographies of our distinguished speakers: James Carlton, Mark Edlund, Alan Steinman ……………. 39 Sincere appreciation The co-conveners acknowledge the generous support of our sponsors for this event, Woods Hole Sea Grant, Dominion Resources, Connecticut Sea Grant. Our vendors include Balogh Books (Scott Balogh), Environmental Proteomics (Jackie Zorz), Microtech Optical (Mark Specht), Reed Mariculture (Eric Henry), Saltwater Studio (Mary Jameson), and Willywaw (Ashley Van Etten). We thank our student volunteers: Shelby Rinehart, Meg McConville, Emily Bishop (U. Rhode Island) and Catharina Grubaugh, Sarah Whorley, and Xian Wang (Fordham U.) for their assistance in registration and meeting audio/visual support. We thank the award judges for the Wilce Graduate Oral Award Committee (Brian Wysor (Chair), Nic Blouin, Ursula Röse), Trainor Graduate Poster Award Committee (Karolina Fučíková (Chair), Charles O'Kelly, Michele Guidone, Ruth Schmitter) and President’s Undergraduate Presentation (oral & poster) Award Committee (Anita Klein (Chair), Julie Koester, Dion Durnford, Kyatt Dixon, Ken Hamel). We also thank the session moderators: Jessie Muhlin, Lorraine Janus, Anne-Marie Lizarralde, Dale Holen, Hilary McManus, and Amy Carlile. We are grateful to our invited speakers Jim Carlton, Mark Edlund, and Alan Steinman. We extend sincere gratitude to Bridgette Clarkston, who designed the 50th NEAS logo and Nic Blouin for modifying that logo for this meeting, and the staff at the Mystic Hilton, particularly Eileen Menard, for providing logistical support for this meeting. 1 Welcome to the 52nd Northeast Algal Symposium! We are delighted to welcome everyone to Mystic, Connecticut, and the Mystic Hilton. -
Spatial and Temporal Variation of Kelp Beds and Associated Macroalgal Assemblages Along the Portuguese Coast
1 Spatial and temporal variation of kelp beds and associated macroalgal assemblages along the Portuguese coast Daniela Pinho Master’s Thesis presented to Faculdade de Ciências da Universidade do Porto in Ecology, Environment and Territory 2014 1 Spatial and temporal variation of kelp beds and associated macroalgal assemblages along the Portuguese coast Daniela Pinho Master ’s degree in Ecology, Environment and Territory Biology Departament 2014 Supervisor Professor Isabel Sousa Pinto, PhD, Associated Professor, Faculdade de Ciências da Universidade do Porto Co-supervisor Iacopo Bertocci, PhD, Auxiliary Researcher, CIIMAR 2 Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ 3 Acknowledgments First of all, I would like to thank to my parents for giving me the opportunity to do a master degree of my interest. I hope the end of this cycle brings them some pride. I would also like to thank some people that without them I couldn’t have done this master thesis. Thanks to prof. Isabel Sousa Pinto for introducing me this opportunity to do my Msc. João Franco thank you for your guidance and support along the year, without it I would have been lost. Francisco Arenas, thank you for your patience with all of my doubts and for always helping me with identification problems. Continue to have that positive way of living each day…! Iacopo Bertocci I’d like to give you a big thank , for your precious help during the entire process of writing, especially with statistics, and also for your willing to help me understand every step at my rhythm. -
Seasonal Dynamics of Bacterial Biofilms on the Kelp Laminaria Hyperborea
Vol. 60: 71–83, 2010 AQUATIC MICROBIAL ECOLOGY Published online May 4 doi: 10.3354/ame01409 Aquat Microb Ecol OPENPEN ACCESSCCESS Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea Mia M. Bengtsson*, Kjersti Sjøtun, Lise Øvreås Department of Biology, University of Bergen, Box 7803, 5020 Bergen ABSTRACT: Seasonal variations of the cell density and bacterial community composition in biofilms growing on the surface of the kelp Laminaria hyperborea from 2 sites on the southwestern coast of Norway were investigated using total cell enumeration and denaturing gradient gel electrophoresis (DGGE) fingerprinting. The major taxonomical groups of bacteria inhabiting the biofilms were iden- tified by DGGE band sequence classification. The microbial cell density of the biofilm appeared to be highly affected by the seasonal growth cycle of the kelp and was found to be lowest on growing kelp in March (minimum 8.3 × 102 cells cm–2), while on non-growing kelp in July to February, it was around 1.0 × 107 cells cm–2 with large fluctuations. The composition of the bacterial community of the biofilm followed a continuous seasonal succession that may be explained by the influence of both biotic factors such as seasonal changes in the kelp substrate and abiotic factors such as seawater tem- perature. Planctomycetes and Alphaproteobacteria were frequently detected throughout the year, while Verrucomicrobia, Cyanobacteria, Gammaproteobacteria, Betaproteobacteria, and Bacter- oidetes were more sporadically detected. The bacterial communities of the biofilm on kelp showed little overlap with that of the surrounding seawater. KEY WORDS: Kelp · Bacteria · Biofilm · Marine · Seasonal dynamics · Seaweed · DGGE Resale or republication not permitted without written consent of the publisher INTRODUCTION bacteria as secondary producers utilizing kelp-pro- duced carbon. -
Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth Marine Science Electronic Archive (PlyMSEA) MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Laminaria hyperborea and foliose red seaweeds on moderately exposed infralittoral rock MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Thomas Stamp 2015-12-16 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/292]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Stamp, T.E., 2015. [Laminaria hyperborea] and foliose red seaweeds on moderately exposed infralittoral rock. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.292.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here.