S C a N ' S Pulse

Total Page:16

File Type:pdf, Size:1020Kb

S C a N ' S Pulse SCAN’SPulse Spring 2019, Vol. 38, No. 2 CONTENTS Exercise and the Human Gut Microbiome 1 Exercise and the Human Gut by Michael Crosier, PhD, RD Microbiome 3 The human microbiome is an excit- may contribute to the health effects From the Editor ing area of research. Although this of regular, moderate exercise. 6 field is in its infancy, scientists are Cellular Senescence-Associated rapidly gaining an understanding of Gut Bacteria Functions Arterial Dysfunction with Advancing the interactions between our cells Age: Translational Potential of and the microbes living in and on our Many aspects of health are linked Nutraceuticals as Senolytics body. We are inhabited with trillions with gut physiology, and our gut bac- 10 of microbes, the largest concentra- teria are important contributors to Implications of Higher-Risk Dietary tion residing in our distal gastroin- this interaction. For example, normal Supplements and Factors Predicting testinal (GI) tract, where the digestion and motility through the GI Their Use in Collegiate Athletes microorganism genome (gut micro- tract is dependent on gut bacteria.2 biome) is about 150 times greater Gut bacteria have the ability to pro- 14 than our own.1 While there is great duce a variety of vitamins, such as fo- From the Chair interindividual variation in bacterial late, vitamin K, and biotin, and are composition, the primary bacterial able to carry out biotransformations 15 phyla found in our guts are Bac- of bile acids, phytonutrients, and Conference Highlights teroidetes and Fermicutes.1 Within other xenobiotics.3 The fermentation 17 these phyla and others, thousands of of resistant carbohydrate in the distal Reviews different bacterial species, mostly GI tract results in the production of anaerobic, inhabit the GI tract.2 the short-chained fatty acids (SCFAs) 17 butyrate, propionate, and acetate. In Research Digest Research is showing a strong connec- addition to contributing to energy tion between our gut bacteria and metabolism,4 these SCFAs serve as 19 host physiology and is demonstrat- ligands for receptors that can activate Of Further Interest ing how this connection relates to various signaling pathways.5 The role risk of disease and overall health. In of SCFAs as signaling molecules influ- 21 Upcoming Events addition, researchers are learning ence physiologic processes such as more about the environmental influ- intestinal secretion of peptides in- ences shaping our microbiome, such volved in satiety and hepatic gluco- as changes throughout the lifecycle neogenesis.6,7 and diet. Although less is known about the effects of exercise on the Our immune system is also intimately human gut microbiome, studies have associated with our gut bacteria. Gut revealed positive changes in our gut bacteria enhance the barrier function bacteria in response to exercise. of the intestine.7 They can also stimu- These exercise-induced changes late the innate immune system and protect against pathogens through chronic diseases, including heart dis- Academy of Nutrition and Dietetics the production of bacteriocides and ease, diabetes, musculoskeletal ail- Dietetic Practice Group of Sports, competition with pathogenic bacte- ments, and potentially mental health Cardiovascular, and Wellness ria.3 conditions.15-17 In the gut, regular Nutrition (SCAN) moderate-intensity exercise has been Although the ideal bacterial compo- shown to reduce the occurrence of SCAN Website: www.scandpg.org sition to maximize health is not colorectal cancer and inflammatory known, high microbial diversity is as- bowel diseases.18-20 However, exercise sociated with improvements in can also lead to GI distress. It has SCAN Office health status, whereas decreased mi- been reported that between 30% to 120 S. Riverside Plaza, Suite 2190 crobial diversity is associated with an 90% of distance runners have experi- Chicago, IL 60606 Phone: 312/899-1775 increased risk for metabolic disease enced exercise-related intestinal [email protected] such as obesity and type 2 diabetes.2 problems.21 Running at high intensity Interim Executive Director: Adriana Legreid often produces GI upset such as Determinants of the Gut bloating, diarrhea, stomach pain, and SCAN Executive Committee Microbiome bleeding.22 High-intensity training Chair Lindzi Torres, MS, MPH, RDN, CSSD has been associated with reduced GI Microbial colonization begins imme- blood flow and hypoxia, potentially Chair-Elect diately at birth and fluctuates leading to mucosal injury and in- Jennifer Ketterly, MS, RD, CSSD throughout the lifecycle. The initial creased intestinal permeability.23,24 bacterial composition is influenced The integrity of intestinal tight junc- Past Chair Cheryl Toner, MS, RDN by mode of delivery, with infants de- tions can be disrupted by the physi- livered vaginally having a greater cal stress of exercise, potentially Treasurer concentration of Bacteriodetes than leading to systemic inflammation.25 Lynn Cialdella Kam, PhD, MA, MBA, RDN Firmicutes compared with infants de- Although an individual bout of in- livered via cesarean section.9 Bacteria tense exercise may increase inflam- Secretary Sherri Stastny, PhD, RD, CSSD diversity increases as solid food is in- mation, habitual exercise and fitness troduced.10 The microbiome typically leads to suppression of basal inflam- Director, Sports Dietetics—USA Subunit continues to change between adult- matory cytokines,26 and has been as- Elizabeth Abbey, PhD, RDN, CDN hood and elderly years. After age 65, sociated with preservation of a more the number of microbial species robust mucosal lining and lesser de- Director, Wellness/Cardiovascular 11 27 RDs Subunit tends to decrease. Changes in GI gree of intestinal permeability. In Mark Hoesten, RD physiology, such as changes in sali- type 2 diabetics, combined aerobic vary function and gut motility, affect and resistance training led to a de- Director of Events gut microbiota as we age.12 crease in several pro-inflammatory Enette Larson-Meyer, PhD, RD, CSSD, FACSM cytokines and an increase in the anti- Director of Communications In adults, diet is a major determinant inflammatory modulators inter- Cara Harbstreet, MS, RD of microbial composition. A high- leukins 4 (IL-4) and 10 (IL-10).28 fiber diet rich in fruits, vegetables, Director of Member Services legumes, and whole-wheat grain Intestinal and systemic effects of ex- Karen Reznik Dolins, EdD, RD, CSSD, CDN products has been shown to increase ercise may be related to changes in 2 SCAN Delegate to House of Delegates microbial diversity. The fecal micro- the gut microbiome. Research shows Jean Storlie, MS, RD biota of vegetarian and vegan sub- that exercise and fitness are associ- jects versus omnivores have lower ated with an increase in the microbial ____________________________ stool pH, likely due to a greater pro- diversity and increases in health-pro- duction of SCFA.13 Overall, a more moting bacterial populations.2 On Editor-in-Chief, SCAN’S PULSE Mark Kern, PhD, RD complex and diverse diet is associ- the other hand, frailty and poor exer- ated with a more diverse micro- cise capacity in the elderly is associ- To contact an individual listed above, go to biome.12 While less is known about ated with low fecal microbial www.scandpg.org/executive-committee/ how exercise affects our gut micro- diversity.29 Exercise-induced alter- biome, research has shown that phys- ations in gut bacteria may play a role ical stress alters the composition of in intestinal immune function and the gut microbiome.14 overall GI physiology. Fit individuals have been shown to have a micro- Effect of Exercise on the Gut biome enriched in butyrate-produc- and Gut Bacteria ing bacteria such as Clostridiales, Roseburia, and Lachnospiraceae,30 Regular moderate exercise provides and increased production of the protection against a number of SCFA butyrate is associated with in- 2 | SCAN’S PULSE Spring 2019, Vol. 38, No. 2 From The Editor Keep Calm and Read PULSE by Mark Kern, PhD, RD, Editor-in-Chief There are plenty of reasons to be stressed out with work and life, but reading a new issue of SCAN’s PULSE is not one of them. I’m hopeful that you can find a few precious moments to relax and read through the pages of this issue. If you do, you will come away with a little more knowledge and perhaps even a sense of relief that you’ve made progress in understanding a few of the complexities of our field. In our previous (Winter) issue, we provided an article regarding diet and the gut microbiome. As a complement to that piece, our cover article by Michael Crosier, PhD, RD discusses the latest research on the role that exercise plays in determining the mi- crobiome. After that, Zachary Clayton, PhD offers his insight into processes of cellular ageing and describes possible ways that what we ingest may intervene to counter it. In our final feature article, you’ll learn from John Sassone, MS, RD and Michelle Bar- rack, PhD, RD, CSSD about the use of dietary supplements that could jeopardize the health or athletic eligibility of competitors and the issues that professionals working with those athletes should consider. You should also spend some time reading through the other informative departments that we provide including “Reviews,” “Conference Highlights,” “Of Further Interest,” “From the Chair,” and “Research Digest.” And don’t fret when you’ve finished, because we’ll have another issue in your inbox for you to enjoy this summer. testinal health.4 Other exercise-in- shown to alter the gut microbiome in Conclusion duced changes in the gut micro- humans.37 Professional rugby players biome that have been associated had a higher fecal microbiome diver- Along with diet, exercise is an easily with health benefits include im- sity compared with controls matched accessible tool that may contribute to proved insulin sensitivity,31 increased for body size, age, and gender. The gut microbiome diversity. Increased satiety,32 and improved mental higher diversity correlated to greater gut bacterial diversity and richness is health.33 exercise intensity and also greater associated with health benefits.4 Posi- protein intake.
Recommended publications
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dry Mouth / Xerostomia
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dry Mouth / Xerostomia Chemical Activity Count (+)-CATECHIN 2 (+)-EPIPINORESINOL 1 (-)-ANABASINE 1 (-)-EPICATECHIN 2 (-)-EPIGALLOCATECHIN 2 (-)-EPIGALLOCATECHIN-GALLATE 2 (Z)-1,3-BIS(4-HYDROXYPHENYL)-1,4-PENTADIENE 1 1,8-CINEOLE 2 10-METHOXYCAMPTOTHECIN 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3-DIHYDROXYBENZOIC-ACID 1 3'-O-METHYL-CATECHIN 1 3-ACETYLACONITINE 1 3-O-METHYL-(+)-CATECHIN 1 4-O-METHYL-GLUCURONOXYLAN 1 5,7-DIHYDROXY-2-METHYLCHROMONE-8-C-BETA-GLUCOPYRANOSIDE 1 5-HYDROXYTRYPTAMINE 1 5-HYDROXYTRYPTOPHAN 1 6-METHOXY-BENZOLINONE 1 ACEMANNAN 1 ACETYL-CHOLINE 1 ACONITINE 2 ADENOSINE 2 AFFINISINE 1 AGRIMONIIN 1 ALANTOLACTONE 2 ALKANNIN 1 Chemical Activity Count ALLANTOIN 1 ALLICIN 2 ALLIIN 2 ALLOISOPTEROPODINE 1 ALLOPTEROPODINE 1 ALLOPURINOL 1 ALPHA-LINOLENIC-ACID 1 ALPHA-TERPINEOL 1 ALPHA-TOCOPHEROL 2 AMAROGENTIN 1 AMELLIN 1 ANABASINE 1 ANDROMEDOTOXIN 1 ANETHOLE 1 ANTHOCYANIDINS 1 ANTHOCYANINS 1 ANTHOCYANOSIDE 1 APIGENIN 1 APOMORPHINE 1 ARABINO-3,6-GALACTAN-PROTEIN 1 ARABINOGALACTAN 1 ARACHIDONIC-ACID 1 ARCTIGENIN 2 ARECOLINE 1 ARGLABRIN 1 ARISTOLOCHIC-ACID 1 ARISTOLOCHIC-ACID-I 1 2 Chemical Activity Count ARMILLARIEN-A 1 ARTEMISININ 1 ASCORBIC-ACID 4 ASTRAGALAN-I 1 ASTRAGALAN-II 1 ASTRAGALAN-III 1 ASTRAGALIN 1 AURICULOSIDE 1 BAICALEIN 1 BAICALIN 1 BAKUCHIOL 1 BENZALDEHYDE 1 BERBAMINE 1 BERBERASTINE 3 BERBERINE 3 BERBERINE-CHLORIDE 1 BERBERINE-IODIDE 1 BERBERINE-SULFATE 1 BETA-AMYRIN-PALMITATE
    [Show full text]
  • Ginsenoside-Rd Induces Cholesterol Efflux from Macrophage-Derived Foam Cells Conjunction with Cardiovascular, Pharmacological and Biochemical Evaluations
    npg Section 6: Cardiovascular Pharmacology 56 10.1038/aps.2013.113 model of brain stem death that employed microinjection of the organophosphate S6.1 insecticide mevinphos bilaterally into RVLM of Sprague-Dawley rats was used, in Ginsenoside-Rd induces cholesterol efflux from macrophage-derived foam cells conjunction with cardiovascular, pharmacological and biochemical evaluations. Da-yan CAO, Ya LIU*, Xiao-hui LI*. Institute of Materia Medica and Department of Results: A significant increase in TrkB protein, phosphorylation of TrkB at Tyr516 Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing (pTrkBY516), Shc at Tyr317 (pShcY317) or extracellular signal-regulated kinase (ERK) 400038, China at Thr202/Tyr204, or Ras activity in RVLM occurred preferentially during the pro- Aim: Ginsenoside-Rd, a purified component from panax notoginseng saponins, life phase of experimental brain stem death. Microinjection bilaterally into RVLM has been described to reduce atherosclerotic lesion formation, yet the mechanism of a specific TrkB inhibitor, K252a, antagonized those increases. Pretreatment with is not fully understood. This study is designed to investigate the potential role of anti-pShcY317 antiserum, Src homology 3 binding peptide (Grb2/SOS inhibitor), Ginsenoside-Rd in modulating cholesterol deposition and to explore its underlying farnesylthioacetic acid (Ras inhibitor), manumycin A (Ras inhibitor) or GW5074 mechanisms in macrophages. Methods: The murine macrophage-derived foam (Raf-1 inhibitor) blunted the preferential augmentation of Ras activity or ERK cells induced by 25 μg/mL oxidized low-density lipoprotein (oxLDL) in RAW264.7 phosphorylation in RVLM and blocked the upregulated nitric oxide synthase I cells for 48 h. Ginsenoside-Rd 10, 20 μmol/L was added during oxLDL incubation (NOS I)/protein kinase G (PKG) signaling, the pro-life cascade that sustains central respectively.
    [Show full text]
  • Neurobiological Effects of Forced Swim Exercise on the Rodent Hippocampus
    REVIEW Acta Neurobiol Exp 2021, 81: 58–68 DOI: 10.21307/ane‑2021‑007 Neurobiological effects of forced swim exercise on the rodent hippocampus: a systematic review Rodrigo Freire Oliveira, Karina Maia Paiva, Gabriel Sousa da Rocha, Marco Aurélio de Moura Freire, Dayane Pessoa de Araújo, Lucídio Cleberson de Oliveira, Fausto Pierdoná Guzen, Paulo Leonardo Araújo de Gois Morais* and José Rodolfo Lopes de Paiva Cavalcanti Laboratory of Experimental Neurology, Department of Biomedical Sciences, University of the State of Rio Grande do Norte, Brazil * Email: [email protected] Forced swimming is a common exercise method used for its low cost and easy management, as seen in studies with the hippocampus. Since it is applied for varied research purposes many protocols are available with diverse aspects of physical intensity, time and periodicity, which produces variable outcomes. In the present study, we performed a systematic review to stress the neurobiological effects of forced swim exercise on the rodent hippocampus. Behavior, antioxidant levels, neurotrophins and inflammatory markers were the main topics examined upon the swimming effects. Better results among these analyses were associated with forced exercise at moderate intensity with an adaptation period and the opposite for continuous exhausting exercises with no adaptation. On further consideration, a standard swimming protocol is necessary to reduce variability of results for each scenario investigated about the impact of the forced swimming on the hippocampus. Key words: behavior, hippocampus, mice, rats, swimming INTRODUCTION course of hippocampal neuroprotection and neuroplas‑ ticity (Zhang et al., 2018). The practice of regular physical exercise is well es‑ Among the sorts of physical training with the cit‑ tablished as a restorative agent by its beneficial effects ed benefits, swimming is considered a popular modal‑ upon the physical and mental health (Ma, 2008; van ity recommended for health promotion and physical Praag, 2009).
    [Show full text]
  • Appraisal of Test Methods for Sex-Hormone Disrupting Chemicals Capable of Affecting the Reproductive Process
    APPRAISAL OF TEST METHODS FOR SEX-HORMONE DISRUPTING CHEMICALS CAPABLE OF AFFECTING THE REPRODUCTIVE PROCESS Prepared by the MRC Institute for Environment and Health for the UK Department of Environment, Transport and the Regions 1998 Prepared by the MRC Institute for Environment and Health Written by: Mr. P. Holmes Dr. C Humfrey Mr. M. Scullion With additional material from : Dr M Taylor 2 FOREWORD Over a number of years anecdotal observations and scientific evidence have come to light which suggest that chemicals present in the environment may cause adverse health effects in humans and wildlife because of their capacity to mimic or influence the action of endogenous hormones such as oestrogens and androgens. Current concerns centre around the apparent increase in human and animal disease states linked to the action of sex-hormones and reported observations from human epidemiological studies of reductions in sperm counts and fertility, increases in the incidence of testicular cancer and congenital birth defects in men and increases in the incidence of breast cancer in women. In wildlife species the occurrence of gross birth deformities, behavioral abnormalities and both feminisation and masculinisation are major concerns. While there remains much scientific uncertainty about the nature and magnitude of the human and environmental risks associated with exposure to endocrine disrupting chemicals, the concerns are such that in November 1996, OECD Member countries decided to work together on international projects to: • coordinate national and regional activities on the risk assessment and management of endocrine disrupting chemicals; • develop internationally acceptable methods for the hazard characterization of endocrine disrupting chemicals; and • harmonise risk characterization approaches and regulatory approaches.
    [Show full text]
  • Effects of 8-Prenylnaringenin on the Hypothalamo-Pituitary-Uterine Axis in Rats After 3-Month Treatment
    397 Effects of 8-prenylnaringenin on the hypothalamo-pituitary-uterine axis in rats after 3-month treatment J Christoffel, G Rimoldi and W Wuttke Division of Clinical and Experimental Endocrinology, Department of Obstetrics and Gynecology, University of Göttingen, Robert-Koch-Str 40, 37099 Göttingen, Germany (Requests for offprints should be addressed to W Wuttke; Email: [email protected]) Abstract Phytoestrogens are increasingly consumed in artificially effects on ER and ER and gonadotropin-releasing high doses as herbal preparations and nutritional supple- hormone (GnRH) receptor gene expression, while ER ments. The flavanone 8-prenylnaringenin (8PN) is a and GnRH receptor transcripts in the anterior pituitary potent phytoestrogen, but its benefits and risks after were reduced under both E2 doses and the high 8PN long-term application are poorly identified. Therefore, we dose. The mRNA concentrations of the LH and - tested two doses of 8PN and 17-estradiol-3-benzoate subunits in the pituitary were suppressed by E2 and 8PN. (E2B) (effective doses: 6·8 and 68·4 mg/kg body weight In summary, 8PN had very similar though milder effects (BW) of 8PN, and 0·17 and 0·7 mg/kg BW of 17- than E2 on all tested parameters. Inhibition of climacteric estradiol (E2)) and compared their effects on uterine complaints by E2 takes place in the hypothalamus, where weight, pituitary hormones (LH, FSH and prolactin) and it inhibits the overactive GnRH pulse generator. Hence, the expression of estrogen-regulated genes and of estrogen 8PN may be used to inhibit climacteric symptoms effec- receptor (ER) and ER in the hypothalamus, pituitary tively.
    [Show full text]
  • Physiological and Biochemical Aspects of 17Β-Hydroxysteroid Dehydrogenase Type 2 and 3
    Physiological and Biochemical Aspects of 17β-Hydroxysteroid Dehydrogenase Type 2 and 3 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Roger Thomas Engeli aus Sulgen (TG), Schweiz Basel, 2017 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung-Nicht kommerziell 4.0 International Lizenz. Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt und Prof. Dr. Rik Eggen Basel, den 20.06.2017 ________________________ Dekan Prof. Dr. Martin Spiess 2 Table of Contents Table of Contents ............................................................................................................................... 3 Abbreviations ..................................................................................................................................... 4 1. Summary ........................................................................................................................................ 6 2. Introduction ................................................................................................................................... 8 2.1 Steroid Hormones ............................................................................................................................... 8 2.2 Human Steroidogenesis....................................................................................................................
    [Show full text]
  • Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia Coli Hyejin Lee1†, Bong Gyu Kim2†, Mihyang Kim3, and Joong-Hoon Ahn1*
    J. Microbiol. Biotechnol. (2015), 25(9), 1442–1448 http://dx.doi.org/10.4014/jmb.1503.03011 Research Article Review jmb Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli Hyejin Lee1†, Bong Gyu Kim2†, Mihyang Kim3, and Joong-Hoon Ahn1* 1Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea 2Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea 3Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea Received: March 4, 2015 Revised: April 22, 2015 The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological Accepted: May 11, 2015 activities and can be sourced from some vegetables and fruits. Microorganisms are an First published online alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we May 14, 2015 first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in *Corresponding author Escherichia coli. After optimization of different combinations of constructs, the yield of Phone: +82-2-405-3764; apigenin was increased from 13 mg/l to 30 mg/l. By introducing two additional genes (TAL Fax: +82-2-3437-6106; E-mail: [email protected] and POMT7) into an apigenin-producing E. coli strain, we were able to synthesize 7-O-methyl apigenin (genkwanin) from tyrosine. In addition, the tyrosine content in E. coli was modulated † These authors contributed by overexpressing aroG and tyrA. The engineered E. coli strain synthesized approximately 41 equally to this work. mg/l genkwanin.
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • Discovery and Validation of a Novel Step Catalyzed by Osf3h in the Flavonoid Biosynthesis Pathway
    biology Article Discovery and Validation of a Novel Step Catalyzed by OsF3H in the Flavonoid Biosynthesis Pathway Rahmatullah Jan 1 , Sajjad Asaf 2 , Sanjita Paudel 3, Lubna 4, Sangkyu Lee 3 and Kyung-Min Kim 1,* 1 Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; [email protected] 2 Natural and Medical Science Research Center, University of Nizwa 616, Nizwa 611, Oman; [email protected] 3 College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; [email protected] (S.P.); [email protected] (S.L.) 4 Department of Botany, Garden Campus, Abdul Wali Khan University, Mardan 23200, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +82-5395-05711 Simple Summary: Flavonoids are important plant secondary metabolites mostly produced in the shikimate pathway. Kaempferol and quercetin are important anti-oxidant flavonoids, which enhance plant tolerance to environmental stresses. The biosynthesis of both the flavonoids largely depends on the expression of genes of the shikimate pathway. Therefore, we selected the OsF3H gene from rice and assessed its functional expression using the yeast expression system. We found that OsF3H regulates a very important step of the flavonoid biosynthesis pathway and enhances the accumulation of kaempferol and quercetin. The present research confirmed that overexpression of the OsF3H gene in rice could significantly increase the biosynthesis of flavonoids, which are essential for the plant defense system. Abstract: Kaempferol and quercetin are the essential plant secondary metabolites that confer huge biological functions in the plant defense system.
    [Show full text]
  • Anti-Estrogenic and Anti-Aromatase Activities of Citrus Peels Major
    www.nature.com/scientificreports OPEN Anti‑estrogenic and anti‑aromatase activities of citrus peels major compounds in breast cancer Dina M. El‑Kersh1, Shahira M. Ezzat2,3, Maha M. Salama1,2*, Engy A. Mahrous2, Yasmeen M. Attia4, Mahmoud Salama Ahmed5 & Mohey M. Elmazar4 Estrogen signaling is crucial for breast cancer initiation and progression. Endocrine‑based therapies comprising estrogen receptor (ER) modulators and aromatase inhibitors remain the mainstay of treatment. This study aimed at investigating the antitumor potential of the most potent compounds in citrus peels on breast cancer by exploring their anti‑estrogenic and anti‑aromatase activities. The ethanolic extract of diferent varieties of citrus peels along with eight isolated favonoids were screened against estrogen‑dependent breast cancer cell lines besides normal cells for evaluating their safety profle. Naringenin, naringin and quercetin demonstrated the lowest IC50s and were therefore selected for further assays. In silico molecular modeling against ER and aromatase was performed for the three compounds. In vivo estrogenic and anti‑estrogenic assays confrmed an anti‑estrogenic activity for the isolates. Moreover, naringenin, naringin and quercetin demonstrated in vitro inhibitory potential against aromatase enzyme along with anticancer potential in vivo, as evidenced by decreased tumor volumes. Reduction in aromatase levels in solid tumors was also observed in treated groups. Overall, this study suggests an antitumor potential for naringenin, naringin and quercetin isolated from citrus peels in breast cancer via possible modulation of estrogen signaling and aromatase inhibition suggesting their use in pre‑ and post‑menopausal breast cancer patients, respectively. Citrus fruits are still used in folk medicine for the management of various diseases 1,2.
    [Show full text]
  • Clinical Bibliographies
    Clinical Bibliographies Publication Article Title Animal 20 11 Heart and Circulatory Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired Mouse Physiology NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice Neuroscience Anti-acrolein treatment improves behavioral outcome and alleviates myelin Mouse damage in experimental autoimmune enchephalomyelitis mouse Heart and Circulatory Detrimental effects of thyroid hormone analog DITPA in the mouse heart: Mouse Physiology increased mortality with in vivo acute myocardial ischemia-reperfusion Circulation Research Endothelial Cell–Specific Deficiency of Ang II Type 1a Receptors Attenuates Mouse Ang II–Induced Ascending Aortic Aneurysms in LDL Receptor–/– Mice Molecular and Cellular Mouse cardiac acyl-CoA synthetase-1 deficiency impairs fatty acid oxidation Mouse Biology and induces cardiac hypertrophy Journal of Cardiovascular The Effect of Selective Antihypertensive Drugs on the Vascular Remodeling- Mouse Pharmacology associated Hypertension: Insights from a Profilin1 Transgenic Mouse Model Hypertension An Oral Formulation of Angiotensin-(1-7) Produces Cardioprotective Effects Rat in Infarcted and Isoproterenol-Treated Rats Kidney International Angiotensin II induces phosphorylation of the thiazide-sensitive sodium Rat chloride cotransporter independent of aldosterone American Journal of Angiotensin-(1–7) reduces proteinuria and diminishes structural damage in Rat Physiology (AJP) renal tissue of stroke-prone spontaneously hypertensive rats
    [Show full text]