Known Bioactive Library: Selleck Bioactive 10Mm, 3.33Mm, 1.11Mm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas Et Al
US 20130253 056A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas et al. (43) Pub. Date: Sep. 26, 2013 (54) CONTINUOUS ADMINISTRATION OF (60) Provisional application No. 61/179,511, filed on May LEVODOPA AND/OR DOPA 19, 2009. DECARBOXYLASE INHIBITORS AND COMPOSITIONS FOR SAME Publication Classification (71) Applicant: NEURODERM, LTD., Ness-Ziona (IL) (51) Int. Cl. A63L/216 (2006.01) (72) Inventors: Mara Nemas, Gedera (IL); Oron (52) U.S. Cl. Yacoby-Zeevi, Moshav Bitsaron (IL) CPC .................................... A6 IK3I/216 (2013.01) USPC .......................................................... 514/538 (73) Assignee: Neuroderm, Ltd., Ness-Ziona (IL) (57) ABSTRACT (21) Appl. No.: 13/796,232 Disclosed herein are for example, liquid aqueous composi (22) Filed: Mar 12, 2013 tions that include for example an ester or salt of levodopa, or an ester or salt of carbidopa, and methods for treating neuro Related U.S. Application Data logical or movement diseases or disorders such as restless leg (63) Continuation-in-part of application No. 12/961,534, syndrome, Parkinson's disease, secondary parkinsonism, filed on Dec. 7, 2010, which is a continuation of appli Huntington's disease, Parkinson's like syndrome, PSP. MSA, cation No. 12/836,130, filed on Jul. 14, 2010, now Pat. ALS, Shy-Drager syndrome, dystonia, and conditions result No. 7,863.336, which is a continuation of application ing from brain injury including carbon monoxide or manga No. 12/781,357, filed on May 17, 2010, now Pat. No. nese intoxication, using Substantially continuous administra 8,193,243. tion of levodopa and/or carbidopa or ester and/or salt thereof. -
The National Drugs List
^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ. -
Screening of a Composite Library of Clinically Used Drugs and Well
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Pharmacol Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2017 November 01. Published in final edited form as: Pharmacol Res. 2016 November ; 113(Pt A): 18–37. doi:10.1016/j.phrs.2016.08.016. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer Nadiya Druzhynaa, Bartosz Szczesnya, Gabor Olaha, Katalin Módisa,b, Antonia Asimakopoulouc,d, Athanasia Pavlidoue, Petra Szoleczkya, Domokos Geröa, Kazunori Yanagia, Gabor Töröa, Isabel López-Garcíaa, Vassilios Myrianthopoulose, Emmanuel Mikrose, John R. Zatarainb, Celia Chaob, Andreas Papapetropoulosd,e, Mark R. Hellmichb,f, and Csaba Szaboa,f,* aDepartment of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA bDepartment of Surgery, The University of Texas Medical Branch, Galveston, TX, USA cLaboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece dCenter of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece eNational and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece fCBS Therapeutics Inc., Galveston, TX, USA Abstract Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no -
Topical Budesonide for Treating Giant Rectal Pseudopolyposis
ANTICANCER RESEARCH 25: 2961-2964 (2005) Topical Budesonide for Treating Giant Rectal Pseudopolyposis CHARALAMPOS PILICHOS1, ATHENA PREZA1, MARIA DEMONAKOU2, DIMITRIOS KAPATSORIS1 and CONSTANTINOS BOURAS1 1First Department of Internal Medicine and 2Department of Pathology, Sismanogleion Hospital, Athens, Greece Abstract. Pseudopolyps are a frequent finding in the course of Case Report inflammatory bowel disease. They are non-neoplastic lesions resulting from a regenerative and healing process that leaves A 45-year-old male patient was admitted to our service in July inflamed colonic mucosa in polypoid configuration. Data about 2002 for acute rectal bleeding. All laboratory tests were their management is lacking. "Giant" pseudopolyps can be normal, except an increase of aminotransferases level (>10 N) mistaken for adenocarcinomas and, as they rarely regress with and a serological profile consistent with acute hepatitis B or a medical management alone, a surgical resection is often required. flare of chronic hepatitis B (HbsAg +, HbsAb –, HbeAg –, A case of giant pseudopolyposis treated non-surgically, in a patient HbeAb +, HbcAb-IgM +). The patient underwent lower with concomitant ulcerative colitis and chronic hepatitis B, is gastro-intestinal endoscopy and multiple biopsies were taken reported, representing a co-morbidity complicating an eventual from a bulky rectal mass lesion (Figure 1). Histological study conservative treatment. The clinical implementation of topical revealed alterations compatible with inflammatory bowel budesonide was originally tested, resulting in clinical, endoscopic disease (IBD) with no dysplasia (Figure 2). Because of the and histological remission. Budesonide seems a promising therapy atypical macroscopic features and the high suspicion of rectal for IBD, particularly when a comorbidity with viral hepatitis exist. -
Practice Parameters for the Surgical Treatment of Ulcerative Colitis Howard Ross, M.D
PRACTICE PARAMETERS Practice Parameters for the Surgical Treatment of Ulcerative Colitis Howard Ross, M.D. • Scott R. Steele, M.D. • Mika Varma, M.D. • Sharon Dykes, M.D. Robert Cima, M.D. • W. Donald Buie, M.D. • Janice Rafferty, M.D. Prepared by the Standards Practice Task Force of the American Society of Colon and Rectal Surgeons he American Society of Colon and Rectal Surgeons the most common surgical indication for UC. Whether is dedicated to assuring high-quality patient care it is secondary to an inability to control symptoms, poor Tby advancing the science, prevention, and manage- quality of life, risks/side effects of chronic medical therapy ment of disorders and diseases of the colon, rectum, and (especially long-term corticosteroids), noncompliance, or anus. The Standards Committee is composed of Society growth failure, patients may opt for surgery in the elective members who are chosen because they have demonstrat- or semielective setting.3 Complete removal of all the poten- ed expertise in the specialty of colon and rectal surgery. tial disease-bearing tissue is theoretically curative in UC. This Committee was created to lead international efforts Operative options include an abdominal colectomy or total in defining quality care for conditions related to the co- proctocolectomy with either a permanent end ileostomy or lon, rectum, and anus. This is accompanied by develop- surgical construction of a “new” rectum through an IPAA ing Clinical Practice Guidelines based on the best available that restores GI continuity.4,5 All these procedures may evidence. These guidelines are inclusive, and not prescrip- be performed by using open or minimally invasive tech- tive. -
Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism -
西安天丰生物有限公司 Xi'an Natural Field Bio-Technique Co., Ltd
西安天丰生物有限公司 Xi’an Natural Field Bio-Technique Co., Ltd Standardized Extract Item Product Name Botancial Name Specification Usage 1 Aloe Emodin Aloe Barbadensis 95%, 98% Medicine, Health Food 2 Aloin Leaf of Aloe Barbadensis 20%, 40%, 60%, 90%, 95% Medicine, Health Food 3 Amygdalin Kernel of Prunus armeniaca. L. 10%, 20%, 50%, 98%, 99% Medicine, Health Food 4 Apigenin Matricaria recutita 98%, 99% Medicine, Health Food 5 Astaxanthin Oil & powder Heamotococcus pluvialis 2% 2.5% 3% 3.5% 4% 5% 8% 10% Cosmetics 6 Chlorogenic Acid Eucommia ulmoides 5% 10% 20% 25% 50% 98% Medicine, Cosmetics 7 Chrysophanol Root of Rheum rhabarbarum 0.5%, 1%, 2%, 98% Medicine, Health Food 8 Curcumin Curcuma Longa 95%, 98% 9 Dihydromyricetin (DHM) Ampelopsis grossedentata 50%, 98% Medicine, Health Food 10 Emodin Root of Rheum rhabarbarum 80%, 95%, 98% Medicine, Health Food 11 Fucoidan Laminaria japonicas 85%, 90%, 95% Medicine, Health Food 12 Genistein Sophora japonica L. 98%, 99% Agriculture Field 13 Ginger Extract Zingiber officinale Gingerol 5% 10% 20% Food Additives 14 Horse Chestnut Extract Seed of Aesculus Hippocastanum 20%, 40% Aescin Medicine, Health Food 15 Hovenia Dulcis Extract Seed of Hovenia Dulcis 20:1, 20% Medicine, Health Food 16 L Dopa Seeds of Mucuna Pruriens 20%, 60%, 98% Medicine, Health Food 17 Luteolin Matricaria recutita 98%, 99% Medicine, Health Food 18 Myricetin Leaf of Ampelopsis grossedentata 98% Medicine, Health Food 19 Octacosanol / Policosanol Sugar Cane Wax 60%, 90% Medicine, Health Food 20 Olive Leaf Extract Leaf of olea europaea -
Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany). -
Microwave Multi-Stage Countercurrent Extraction of Dihydromyricetin from Ampelopsis Grossedentata
374 W. LI et al.: Microwave-Assisted Extraction of Dihydromyricetin, Food Technol. Biotechnol. 45 (4) 374–380 (2007) ISSN 1330-9862 original scientific paper (FTB-1588) Microwave Multi-Stage Countercurrent Extraction of Dihydromyricetin from Ampelopsis grossedentata Wei Li1,2, Cheng Zheng3*, Jinshui Wang4, Youyuan Shao1, Yanxiang Gao2, Zhengxiang Ning4 and Yueming Jiang5 1College of Biological Engineering, Hubei University of Technology, Wuhan 430068, PR China 2College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, PR China 3College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510091, PR China 4College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, PR China 5South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China Received: November 30, 2005 Revised version: December 4, 2006 Accepted: January 31, 2007 Summary Microwave-assisted extraction (MAE) technique in combination with multi-stage countercurrent extraction (MCE), namely microwave multi-stage countercurrent extraction (MMCE), was evaluated for the extraction of dihydromyricetin (DMY) from Ampelopsis grossedentata. Ethanol, methanol and water were used as extract solvents in the MMCE method. Of the three solvents used, water was found to be the best in extracting DMY from Ampelopsis grossedentata because it had a good extraction yield and is inexpensive, non-toxic and environmentally friendly. The optimal conditions of MMCE for the extrac- tion of DMY can be determined to be the ratio of the extraction solvent to plant material of 30:1, the extraction time of 5 min, the extraction temperature of 110 °C and the micro- wave power of 600 W. In addition, the extraction efficiency of the MMCE method was compared with that of the microwave static batch extraction (MSBE) under the optimum extraction conditions. -
<I>Iguana Iguana</I>
Journal of the American Association for Laboratory Animal Science Vol 58, No 6 Copyright 2019 November 2019 by the American Association for Laboratory Animal Science Pages 810–816 Use of Rodent Sedation Tests to Evaluate Midazolam and Flumazenil in Green Iguanas (Iguana iguana) Thais F Bressan, Thayanee Sobreira, and Adriano B Carregaro* This study aimed to evaluate the applicability of rodent behavioral tests to assess the effects of midazolam and flumazenil in green iguanas. Four tests commonly used to assess sedation in rodents—the open field test, forced swim test, behavioral scale, and traction test—were conducted in 10 juveniles iguanas. The animals received midazolam (2 mg/kg IM) or 0.9% NaCl (0.4 mL/kg IM), and the tests were conducted between 0 and 300 min thereafter. To verify the effects of midazolam and flumazenil, the most informative tests from the evaluation stage and the limb withdrawal latency time (LWLT) were used. All 10 iguanas were tested under 4 conditions, as follows: MS, midazolam (2 mg/kg IM), followed 30 min later by 0.9% NaCl (0.4 mL/kg IM); FS, flumazenil (0.05 mg/kg IM), followed by 0.9% NaCl (0.4 mL/kg IM) 30 min later; MF, midazolam (2 mg/ kg IM), followed by flumazenil (0.05 mg/kg IM) 30 min later; and CON, 0.9% NaCl (0.4 mL/kg IM). The behavioral scale and the forced swim test showed the best detection of the onset, peak effect, and the differences between the sedated and con- trol iguanas, with testing done between 15 and 240 min after drug administration. -
Calcium Channel Blocker As a Drug Candidate for the Treatment of Generalised Epilepsies
UNIVERSITAT DE BARCELONA Faculty of Pharmacy and Food Sciences Calcium channel blocker as a drug candidate for the treatment of generalised epilepsies Final degree project Author: Janire Sanz Sevilla Bachelor's degree in Pharmacy Primary field: Organic Chemistry, Pharmacology and Therapeutics Secondary field: Physiology, Pathophysiology and Molecular Biology March 2019 This work is licensed under a Creative Commons license ABBREVIATIONS AED antiepileptic drug AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ANNA-1 antineuronal nuclear antibody 1 BBB blood-brain barrier Bn benzyl BnBr benzyl bromide BnNCO benzyl isocyanate Boc tert-butoxycarbonyl Bu4NBr tetrabutylammonium bromide Ca+2 calcium ion CACNA1 calcium channel voltage-dependent gene cAMP cyclic adenosine monophosphate CCB calcium channel blocker cGMP cyclic guanosine monophosphate CH3CN acetonitrile Cl- chlorine ion Cmax maximum concentration CMV cytomegalovirus CTScan computed axial tomography DCM dichloromethane DIPEA N,N-diisopropylethylamine DMF dimethylformamide DMPK drug metabolism and pharmacokinetics DNET dysembryoplastic neuroepithelial tumours EEG electroencephalogram EPSP excitatory post-synaptic potential FDA food and drug administration Fe iron FLIPR fluorescence imaging plate reader fMRI functional magnetic resonance imaging GABA γ-amino-α-hydroxybutyric acid GAD65 glutamic acid decarboxylase 65 GAERS generalised absence epilepsy rat of Strasbourg GluR5 kainate receptor GTC generalised tonic-clonic H+ hydrogen ion H2 hydrogen H2O dihydrogen dioxide (water) -
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE