Image Formation in Structured Illumination Wide-Field Fluorescence

Total Page:16

File Type:pdf, Size:1020Kb

Image Formation in Structured Illumination Wide-Field Fluorescence Available online at www.sciencedirect.com Micron 39 (2008) 808–818 www.elsevier.com/locate/micron Image formation in structured illumination wide-field fluorescence microscopy Dejan Karadaglic´ a,*, Tony Wilson b a University of Liverpool, School of Biological Sciences, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK b University of Oxford, Department of Engineering Science Holder Building, Parks Road, Oxford OX1 3PJ, UK Received 24 October 2007; received in revised form 19 January 2008; accepted 19 January 2008 Abstract We present a theoretical analysis of the image formation in structured illumination wide-field fluorescence microscopy (SIWFFM). We show that the optically sectioned images obtained with this approach possess the optical sectioning strengths comparable to those obtained with the confocal microscope. We further show that the transfer function behaviour is directly comparable to that of the true confocal instrument. The theoretical considerations are compared with and confirmed by experimental results. # 2008 Elsevier Ltd. All rights reserved. Keywords: Structured illumination; Optical sectioning; Optical microscopy; Fluorescence microscopy; Wide-field microscopy; Confocal microscopy 1. Introduction 1996; Wilson et al., 1996), whereas the second has attempted to modify the conventional optical microscope in such a way as to The confocal microscope possesses a number of advantages introduce optical sectioning (Neil et al., 1997). If we define over the conventional optical microscope, and the optical optical sectioning as the requirement that all spatial frequencies sectioning is arguably the most important one (Wilson and within the transfer function attenuate with defocus then it is Sheppard, 1984; Wilson, 1990; Pawley, 1995). The traditional clear that the conventional microscope does not possess this construction of a confocal microscope employs a point light property. However, if we consider for example the conventional source together with a point pinhole detector. It is the presence fluorescence case then we find that it is only the zero spatial of the pinhole aperture which is responsible for the optical frequency which does not attenuate with defocus; all the other sectioning since it physically blocks light from out-of-focus frequencies are imaged less strongly with increasing defocus. planes from reaching the photodetector and hence precludes This suggests that if we modify the illumination system in a this light (information) from contributing to the final image. A conventional microscope, so as to project a single spatial complete image of the object is built up by scanning. These frequency fringe pattern onto the object, the microscope will systems, which are usually built as an ‘add-on’ to a image those parts of the fringe pattern efficiently whose conventional microscope, are very powerful and have found projection onto the object lies within the focal region. We thus great application is a wide number of fields. They normally obtain an image of the object in which the focal optical section require laser light sources since standard microscope illumina- is labelled by a sharply focused grid of lines. Simple processing tion systems are usually insufficiently bright. In order to of three images, taken at three relative spatial positions of the overcome these problems a number of approaches have been fringe pattern, permits both an optically sectioned and a taken. Among those there are two developed at the University conventional image to be extracted in real-time. The approach of Oxford. The first one has concentrated on improving the has been demonstrated in both brightfield reflected light design of traditional pinhole-based systems (Jusˇkaitis et al., imaging (Neil et al., 1997; Wilson et al., 1996) as well as fluorescence (Neil et al., 1998, 2000; Lanni and Wilson, 2000). In this article we theoretically describe the fluorescence case * Corresponding author. Tel.: +44 151 7954508; fax: +44 151 7954431. using two methods of obtaining structured illumination: fringe E-mail addresses: [email protected] (D. Karadaglic´), projection and grid projection. In the fringe projection case the [email protected] (T. Wilson). structured pattern is formed by the interference of two coherent 0968-4328/$ – see front matter # 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.micron.2008.01.017 D. Karadaglic´, T. Wilson / Micron 39 (2008) 808–818 809 illumination beams, so as to create the appropriate pattern on aperture of the objective lens and l denotes the wavelength. the specimen. In the grid projection approach the structured Although the excitation light, used to create interference pat- pattern is formed by imaging a physical grid object on the tern, may be coherent in nature, the light emitted from the specimen. fluorescent specimen is completely incoherent, and given by There have been numerous attempts to exploit structured illumination in microscopy to achieve different goals. Iemissionðt1; w1Þ¼f1 þ m cosðnt1 þ fÞg f ðt1; w1Þ (2) Notably, Gustafsson has shown that using basically the same principle as described in this paper it is possible theoretically If we now assume that the objective lens has the amplitude to improve the lateral resolution of the optical microscope by point spread function h2, and since the final image recorded by a factor of two (Gustafsson, 2000). Further, exploiting the the detector in the image plane ðt; wÞ is equal to the convolution nonlinearity properties of fluorophore saturation theoretically of the emission light and intensity point spread function of the an unlimited improvement is possible (Gustafsson, 2005). lens (Wilson and Sheppard, 1984), we may write for the However, in the reality the improvement is limited by the intensity of that image signal-to-noise ratio and the photobleaching of imaged ZZ fluorophores. Bailey et al. (1993) introduce standing wave Iðt; wÞ¼ f1 þ m cosðnt þ fÞg f ðt ; w Þjh ðt þ t ; w excitation in the fluorescence microscopy, by which they 1 1 1 2 1 achieve improved axial resolution. Failla et al. (2003) name þ w Þj2dt dw (3) this type of microscopy spatially modulated illumination 1 1 1 microscopy and claim it can be used for the measurement of The excitation and the fluorescence emission wavelengths the structures with accuracy close to 1 nm. This approach also have also been taken to be equal for simplicity, although in the uses structured illumination, but unlike of the approach reality, the emission wavelength must be longer. described in the paper, its sinusoidal pattern is laid along the Eq. (3) may be written in the following form: illumination axis, which complicates the system setup, and limits its potential applications. m m The analysis in this article emphasises the optical sectioning Iðt; wÞ¼I0ðt; wÞþ expð jfÞInðt; wÞþ expð jfÞIÀnðt; wÞ 2 2 side of the approach, and presents experimental results which (4) confirm that the optically sectioned images of high quality can be achieved by this method. where ZZ 2. Fringe projection—imaging theory 2 I0ðt; wÞ¼ f ðt1; w1Þjh2ðt1 þ t; w1 þ wÞj dt1dw1 (5) Let us assume the fluorescence specimen, characterised by a spatial distribution of fluorescence f ðt1; w1Þ, Fig. 1,is represents a conventional fluorescence image and Inðt; wÞ is illuminated with a one-dimensional interference intensity given by pattern of the form ZZ 2 Iexcitationðt1; w1Þ¼1 þ m cosðnt1 þ fÞ (1) Inðt; wÞ¼ expð jnt1Þ f ðt1; w1Þjh2ðt1 þ t; w1 þ wÞj dt1dw1 where m denotes the modulation depth, n the spatial frequency (6) and f a spatial phase. We have elected to work in optical co- ordinates ðt; wÞ which are related to real co-ordinates (x, y) via à and we note that IÀnðt; wÞ¼In ðt; wÞ where the asterisk denotes ðt; wÞ¼ð2p=lÞðx; yÞn sin a where n sin a is the numerical complex conjugate. If we now introduce the spectrum of the specimen, F(m, n) of f ðt1; w1Þ, where m and n are spatial frequencies in the t1 and w1 directions, respectively, we may recast Eq. (6) as ZZ Inðt; wÞ¼expð jntÞ Fðm; nÞCðm þ n; nÞ exp½ jðmt þ nwÞdmdn (7) where the transfer function C(m, n) is given by the convolution of the pupil functions C(m, n)=P(m, n) P*(m, n)(Wilson and Sheppard, 1984). Since the function C(m, n) is also a function of axial distance, u, we will add that parameter as another argument in the function. The normalised defocus co-ordinate u is related to 2 Fig. 1. Schematic diagram of a fringe projection imaging system. the actual defocus, z, via u =(8p/l)z sin (a/2). 810 D. Karadaglic´, T. Wilson / Micron 39 (2008) 808–818 Eq. (7) now permits us to write an alternative expression for Now the question is—how to extract the image jInðt; w; uÞj the detected image as from the raw data? One method would be to record three raw ZZ images taken at three equally spaced positions of the fringe f f Iðt; w; uÞ¼ Fðm; nÞCðm; n; uÞ exp½ðmt þ nwÞdmdn pattern. We take the spatial phase = 0 (a constant) at the first ZZ position and take an image I1. We then move the fringe pattern m by one third of a period, f = f +2p/3, and take image I . þ expð jfÞ expð jntÞ Fðm; nÞCðm þ n; n; uÞ 0 2 2 Finally, image I3 is taken corresponding to f = f0 +4p/3. It is m then a simple matter to compute  exp½ jðmt þ nwÞdmdn þ expð jfÞ expð jntÞ 2 ZZ 3m I þ I eÀ j2p=3 þ I e j2p=3 ¼ expð jf ÞI ðt; w; uÞ (10)  Fðm; nÞCðm À n; n; uÞ 1 2 3 2 0 n  exp½ jðmt þ nwÞdmdn (8) and hence À j2p=3 j2p=3 We see that the raw image consists of three terms.
Recommended publications
  • Second Harmonic Imaging Microscopy
    170 Microsc Microanal 9(Suppl 2), 2003 DOI: 10.1017/S143192760344066X Copyright 2003 Microscopy Society of America Second Harmonic Imaging Microscopy Leslie M. Loew,* Andrew C. Millard,* Paul J. Campagnola,* William A. Mohler,* and Aaron Lewis‡ * Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, CT 06030-1507 USA ‡ Division of Applied Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Second Harmonic Generation (SHG) has been developed in our laboratories as a high- resolution non-linear optical imaging microscopy (“SHIM”) for cellular membranes and intact tissues. SHG is a non-linear process that produces a frequency doubling of the intense laser field impinging on a material with a high second order susceptibility. It shares many of the advantageous features for microscopy of another more established non-linear optical technique: two-photon excited fluorescence (TPEF). Both are capable of optical sectioning to produce 3D images of thick specimens and both result in less photodamage to living tissue than confocal microscopy. SHG is complementary to TPEF in that it uses a different contrast mechanism and is most easily detected in the transmitted light optical path. It also does not arise via photon emission from molecular excited states, as do both 1- and 2-photon excited fluorescence. SHG of intrinsic highly ordered biological structures such as collagen has been known for some time but only recently has the full potential of high resolution 3D SHIM been demonstrated on live cells and tissues. For example, Figure 1 shows SHIM from microtubules in a living organism, C. elegans. The images were obtained from a transgenic nematode that expresses a ß-tubulin-green fluorescent protein fusion and Figure 1 also shows the TPEF image from this molecule for comparison.
    [Show full text]
  • Optical Sectioning in Fluorescence Microscopy by Confocal and 2
    Optical Sectioning in Fluorescence achieved with this methodology, Calcium sparks are microscopic calcium release Downloaded from events inside living muscle cells and their properties are giving new insight into Microscopy by Confocal and how excitation leads to contraction (Cannell et al., 1995; Lopez-Lopez et al,, 2-Photon Molecular Excitation 1995; Gomez et al., 1997). Although the wide field microscope had been applied to calcium imaging since about 1985, calcium sparks had not been observed Techniques previously. This is probably because the presence of fluorescence from outside https://www.cambridge.org/core M.B. Cannell & C.Soeller the focal plane results in a marked loss of in-plane contrast for wide field St. George's Hospital Medical School, microscopy. (Note also that fluo-3 was used as the calcium indicator in these Cranmer Terrace, London SW17 ORE experiments as it has low fluorescence in the absence of calcium which also improves image contrast.) The calcium spark illustrates the high sensitivity of Confocal Microscopy current confocal optical methods - the calcium spark finally occupies about 10 fl Fluorescence microscopy has proved to be an invaluable tool for 14 4 (10" l) and represents calcium binding to only -10 indicator molecules, Until biomedical science since it is possible to visualise small quantities of labeled recently, the laser scanning confocal microscope has been the only instrument materials (such as intracellular ions and proteins) in both fixed and living that could measure fluorescence with a spatial resolution of about 0.4 x 0.4 x 0.8 cells, However, the conventional wide field fluorescence microscope suffers .
    [Show full text]
  • Two-Photon Excitation Fluorescence Microscopy
    P1: FhN/ftt P2: FhN July 10, 2000 11:18 Annual Reviews AR106-15 Annu. Rev. Biomed. Eng. 2000. 02:399–429 Copyright c 2000 by Annual Reviews. All rights reserved TWO-PHOTON EXCITATION FLUORESCENCE MICROSCOPY PeterT.C.So1,ChenY.Dong1, Barry R. Masters2, and Keith M. Berland3 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; e-mail: [email protected] 2Department of Ophthalmology, University of Bern, Bern, Switzerland 3Department of Physics, Emory University, Atlanta, Georgia 30322 Key Words multiphoton, fluorescence spectroscopy, single molecule, functional imaging, tissue imaging ■ Abstract Two-photon fluorescence microscopy is one of the most important re- cent inventions in biological imaging. This technology enables noninvasive study of biological specimens in three dimensions with submicrometer resolution. Two-photon excitation of fluorophores results from the simultaneous absorption of two photons. This excitation process has a number of unique advantages, such as reduced specimen photodamage and enhanced penetration depth. It also produces higher-contrast im- ages and is a novel method to trigger localized photochemical reactions. Two-photon microscopy continues to find an increasing number of applications in biology and medicine. CONTENTS INTRODUCTION ................................................ 400 HISTORICAL REVIEW OF TWO-PHOTON MICROSCOPY TECHNOLOGY ...401 BASIC PRINCIPLES OF TWO-PHOTON MICROSCOPY ..................402 Physical Basis for Two-Photon Excitation ............................
    [Show full text]
  • Innovations of Wide-Field Optical-Sectioning
    Innovations of wide-field optical-sectioning fluorescence microscopy: toward high-speed volumetric bio-imaging with simplicity Thesis by Jiun-Yann Yu In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2014 (Defended March 25, 2014) ii c 2014 Jiun-Yann Yu All Rights Reserved iii Acknowledgements Firstly, I would like to thank my thesis advisor, Professor Chin-Lin Guo, for all of his kind advice and generous financial support during these five years. I would also like to thank all of the faculties in my thesis committee: Professor Geoffrey A. Blake, Professor Scott E. Fraser, and Professor Changhuei Yang, for their guidance on my way towards becoming a scientist. I would like to specifically thank Professor Blake, and his graduate student, Dr. Daniel B. Holland, for their endless kindness, enthusiasms and encouragements with our collaborations, without which there would be no more than 10 pages left in this thesis. Dr. Thai Truong of Prof. Fraser's group and Marco A. Allodi of Professor Blake's group are also sincerely acknowledged for contributing to this collaboration. All of the members of Professor Guo's group at Caltech are gratefully acknowledged. I would like to thank our former postdoctoral scholar Dr. Yenyu Chen for generously teaching me all the engineering skills I need, and passing to me his pursuit of wide-field optical-sectioning microscopy. I also thank Dr. Mingxing Ouyang for introducing me the basic concepts of cell biology and showing me the basic techniques of cell-biology experiments. I would like to pay my gratefulness to our administrative assistant, Lilian Porter, not only for her help on administrative procedures, but also for her advice and encouragement on my academic career in the future.
    [Show full text]
  • Imaging with Second-Harmonic Generation Nanoparticles
    1 Imaging with Second-Harmonic Generation Nanoparticles Thesis by Chia-Lung Hsieh In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2011 (Defended March 16, 2011) ii © 2011 Chia-Lung Hsieh All Rights Reserved iii Publications contained within this thesis: 1. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging," Opt. Express 17, 2880–2891 (2009). 2. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes," Biomaterials 31, 2272–2277 (2010). 3. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Second harmonic generation from nanocrystals under linearly and circularly polarized excitations," Opt. Express 18, 11917–11932 (2010). 4. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media," Opt. Express 18, 12283–12290 (2010). 5. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723–20731 (2010). iv Acknowledgements During my five-year Ph.D. studies, I have thought a lot about science and life, but I have never thought of the moment of writing the acknowledgements of my thesis. At this moment, after finishing writing six chapters of my thesis, I realize the acknowledgment is probably one of the most difficult parts for me to complete.
    [Show full text]
  • All Optical Histology of Brain Tissue: Serial Ablation and Multiphoton Imaging with Femtosecond Laser Pulses
    All optical histology of brain tissue: Serial ablation and multiphoton imaging with femtosecond laser pulses Philbert S. Tsai, Beth Friedman, Varda Lev-Ram*, Qing Xiong*, Roger Y. Tsien* and David Kleinfeld Departments of Physics and *Pharmacology University of California, San Diego La Jolla, CA 92093 Agustin I. Ifarraguerri and Beverly D. Thompson Science Applications International Corporation Arlington, VA 22203 Jeff A. Squier Department of Physics Colorado School of Mines Golden, CO 80401 Ph:303-384-2385, FAX:303-273-3919, E-mail:[email protected] Abstract: We demonstrate the first use of femtosecond laser pulses for serial histology. Successive iterations of multiphoton imaging and ablation provide diffraction-limited volumetric data that is used to reconstruct the architectonics of labeled cells or microvasculature. ”2002 Optical Society of America OCIS codes: (000.0000) General 1. Introduction Current techniques in histology involve the manual slicing of frozen or embedded tissue, which is both labor intensive and may affect tissue morphology [1]. Advances in molecular labeling and the introduction of transgenic animals have brought about a need for high throughput analysis of architectonics and patterns of gene expression. Figure 1. The iterative process by which tissue is imaged and cut. A sample (left) containing two fluorescently labeled structures is imaged by two-photon microscopy to collect optical sections through the ablated surface until scattering of the incident light reduces the signal-to-noise ratio below a useful value; typically ~ 150 mm in fixed tissue. Labeled features in the stack of optical sections are digitally reconstructed (right). The top of the now-imaged region of the tissue is cut away with femtosecond pulses to expose a new surface.
    [Show full text]
  • Multilayer Three-Dimensional Super Resolution Imaging of Thick Biological Samples
    Multilayer three-dimensional super resolution imaging of thick biological samples Alipasha Vaziri1, Jianyong Tang, Hari Shroff, and Charles V. Shank1 Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147 Contributed by Charles V. Shank, October 23, 2008 (sent for review September 30, 2008) Recent advances in optical microscopy have enabled biological versely proportional to pulse width squared and is called tem- imaging beyond the diffraction limit at nanometer resolution. A poral focusing (16, 17). Temporal focusing is experimentally general feature of most of the techniques based on photoactivated achieved by first broadening the pulse using a dispersive optical localization microscopy (PALM) or stochastic optical reconstruction element such as a grating. The illuminated spot on the grating is microscopy (STORM) has been the use of thin biological samples in then imaged onto the specimen plane using a telescope. This combination with total internal reflection, thus limiting the imag- results in a pulse broadened everywhere in the sample except at ing depth to a fraction of an optical wavelength. However, to study the image plane, where the dispersion is compensated and the whole cells or organelles that are typically up to 15 ␮m deep into pulse reaches its minimum width (Fig. 1). Compared with an the cell, the extension of these methods to a three-dimensional epi-fluorescence technique, this minimum width results in a (3D) super resolution technique is required. Here, we report an depth of field that is orders of magnitude smaller (see supporting advance in optical microscopy that enables imaging of protein information (SI) Fig. S1 and SI Materials and Methods).
    [Show full text]
  • Introduction to Confocal Laser Scanning Microscopy (LEICA)
    Introduction to Confocal Laser Scanning Microscopy (LEICA) This presentation has been put together as a common effort of Urs Ziegler, Anne Greet Bittermann, Mathias Hoechli. Many pages are copied from Internet web pages or from presentations given by Leica, Zeiss and other companies. Please browse the internet to learn interactively all about optics. For questions & registration please contact www.zmb.unizh.ch . Confocal Laser Scanning Microscopy xy yz 100 µm xz 100 µm xy yz xz thick specimens at different depth 3D reconstruction Types of confocal microscopes { { { point confocal slit confocal spinning disc confocal (Nipkov) Best resolution and out-of-focus suppression as well as highest multispectral flexibility is achieved only by the classical single point confocal system ! Fundamental Set-up of Fluorescence Microscopes: confocal vs. widefield Confocal Widefield Fluorescence Fluorescence Microscopy Microscopy Photomultiplier LASER detector Detector pinhole aperture CCD Dichroic mirror Fluorescence Light Source Light source Okular pinhole aperture Fluorescence Filter Cube Objectives Sample Plane Z Focus Confocal laser scanning microscope - set up: The system is composed of a a regular florescence microscope and the confocal part, including scan head, laser optics, computer. Comparison: Widefield - Confocal Y X Higher z-resolution and reduced out-of-focus-blur make confocal pictures crisper and clearer. Only a small volume can be visualized by confocal microscopes at once. Bigger volumes need time consuming sampling and image reassembling.
    [Show full text]
  • Label-Free Multiphoton Microscopy: Much More Than Fancy Images
    International Journal of Molecular Sciences Review Label-Free Multiphoton Microscopy: Much More than Fancy Images Giulia Borile 1,2,*,†, Deborah Sandrin 2,3,†, Andrea Filippi 2, Kurt I. Anderson 4 and Filippo Romanato 1,2,3 1 Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy; fi[email protected] 2 Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; [email protected] (D.S.); andrea.fi[email protected] (A.F.) 3 L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy 4 Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK; [email protected] * Correspondence: [email protected] † These authors contributed equally. Abstract: Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment.
    [Show full text]
  • How Single-Molecule Localization Microscopy Expandedour
    International Journal of Molecular Sciences Review How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription Peter Hoboth 1,2 , OndˇrejŠebesta 2 and Pavel Hozák 1,3,* 1 Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; [email protected] 3 Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeˇnská 1083, 142 20 Prague, Czech Republic * Correspondence: [email protected] Abstract: Classical models of gene expression were built using genetics and biochemistry. Although these approaches are powerful, they have very limited consideration of the spatial and temporal organization of gene expression. Although the spatial organization and dynamics of RNA polymerase II (RNAPII) transcription machinery have fundamental functional consequences for gene expression, its detailed studies have been abrogated by the limits of classical light microscopy for a long time. The advent of super-resolution microscopy (SRM) techniques allowed for the visualization of the RNAPII transcription machinery with nanometer resolution and millisecond precision. In this review, we summarize the recent methodological advances in SRM, focus on its application for studies of the nanoscale organization in space and time of RNAPII transcription, and discuss its consequences for the mechanistic understanding of gene expression. Citation: Hoboth, P.; Šebesta, O.; Hozák, P. How Single-Molecule Keywords: cell nucleus; gene expression; transcription foci; transcription factors; super-resolution Localization Microscopy Expanded microscopy; structured illumination; stimulated emission depletion; stochastic optical reconstruc- Our Mechanistic Understanding of tion; photoactivation RNA Polymerase II Transcription.
    [Show full text]
  • Optical Imaging of Surface Chemistry and Dynamics in Confinement
    Optical Imaging of Surface Chemistry and Dynamics in Confinement Carlos Macias-Romero, Igor Nahalka, Halil I. Okur, Sylvie Roke# Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Sci- ence (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytech- nique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland, #[email protected]; Surface chemistry and dynamics are optically imaged label-free and non-invasively in a 3D confined geome- try and on sub-second time scales Abstract The interfacial structure and dynamics of water in a microscopically confined geometry is imaged in three dimensions and on millisecond time scales. We developed a 3D wide-field second harmonic mi- croscope that employs structured illumination. We image pH induced chemical changes on the curved and confined inner and outer surfaces of a cylindrical glass micro-capillary immersed in aqueous solu- tion. The image contrast reports on the orientational order of interfacial water, induced by charge- dipole interactions between water molecules and surface charges. The images constitute surface poten- tial maps. Spatially resolved surface pKa,s values are determined for the silica deprotonation reaction. Values range from 2.3<pKa,s<10.7, highlighting the importance of surface heterogeneities. Water mol- ecules that rotate along an oscillating external electric field are also imaged. With this approach, real time movies of surface processes that involve flow, heterogeneities and potentials can be made, which will further developments in electrochemistry, geology, catalysis, biology, and microtechnology. Microscopic and nanoscopic structural heterogeneities, confinement, and flow critically influ- ence surface chemical processes in electrochemical, geological, and catalytic reactions (1-5).
    [Show full text]
  • Single-Molecule Localization Microscopy Hardware
    PRIMER Single-molecule localization microscopy Mickaël Lelek1,2, Melina T. Gyparaki3, Gerti Beliu4, Florian Schueder 5,6, Juliette Griffié7, Suliana Manley 7 ✉ , Ralf Jungmann 5,6 ✉ , Markus Sauer 4 ✉ , Melike Lakadamyali8,9,10 ✉ and Christophe Zimmer 1,2 ✉ Abstract | Single- molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction- limited image sequences and the localizations are used to generate a super- resolution image or a time course of super- resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM. Diffraction The spatial resolution of standard optical microscopy They have become broadly adopted in the life sciences The bending of light waves at techniques is limited to roughly half the wavelength of owing to their high spatial resolution — typically the edges of an obstacle such light.
    [Show full text]