Screening for Novel Hexanucleotide Repeat Expansions at ALS- and FTD-Associated Loci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PARSANA-DISSERTATION-2020.Pdf
DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks. -
DNA Breakpoint Assay Reveals a Majority of Gross Duplications Occur in Tandem Reducing VUS Classifications in Breast Cancer Predisposition Genes
© American College of Medical Genetics and Genomics ARTICLE Corrected: Correction DNA breakpoint assay reveals a majority of gross duplications occur in tandem reducing VUS classifications in breast cancer predisposition genes Marcy E. Richardson, PhD1, Hansook Chong, PhD1, Wenbo Mu, MS1, Blair R. Conner, MS1, Vickie Hsuan, MS1, Sara Willett, MS1, Stephanie Lam, MS1, Pei Tsai, CGMBS, MB (ASCP)1, Tina Pesaran, MS, CGC1, Adam C. Chamberlin, PhD1, Min-Sun Park, PhD1, Phillip Gray, PhD1, Rachid Karam, MD, PhD1 and Aaron Elliott, PhD1 Purpose: Gross duplications are ambiguous in terms of clinical cohort, while the remainder have unknown tandem status. Among interpretation due to the limitations of the detection methods that the tandem gross duplications that were eligible for reclassification, cannot infer their context, namely, whether they occur in tandem or 95% of them were upgraded to pathogenic. are duplicated and inserted elsewhere in the genome. We Conclusion: DBA is a novel, high-throughput, NGS-based method investigated the proportion of gross duplications occurring in that informs the tandem status, and thereby the classification of, tandem in breast cancer predisposition genes with the intent of gross duplications. This method revealed that most gross duplica- informing their classifications. tions in the investigated genes occurred in tandem and resulted in a Methods: The DNA breakpoint assay (DBA) is a custom, paired- pathogenic classification, which helps to secure the necessary end, next-generation sequencing (NGS) method designed to treatment options for their carriers. capture and detect deep-intronic DNA breakpoints in gross duplications in BRCA1, BRCA2, ATM, CDH1, PALB2, and CHEK2. Genetics in Medicine (2019) 21:683–693; https://doi.org/10.1038/s41436- Results: DBA allowed us to ascertain breakpoints for 44 unique 018-0092-7 gross duplications from 147 probands. -
CD19 As a Membrane-Anchored Adaptor Protein of B Lymphocytes: Costimulation of Lipid and Protein Kinases by Recruitment of Vav
Immunity, Vol. 8, 635±645, May, 1998, Copyright 1998 by Cell Press CD19 as a Membrane-Anchored Adaptor Protein of B Lymphocytes: Costimulation of Lipid and Protein Kinases by Recruitment of Vav Lorraine M. O'Rourke,* Reuben Tooze,* CD21 (Dempsey et al., 1996). CD19 also promotes the Martin Turner,³§ David M. Sandoval,² Robert H. Carter,² development and maintenance of the B-1 subset of B ³ Victor L. J. Tybulewicz, and Douglas T. Fearon*k lymphocytes (Engel et al., 1995; Rickert et al., 1995; *Wellcome Trust Immunology Unit Krop et al., 1996), which expresses a distinct V gene Department of Medicine repertoire, and it may regulate the expression of the University of Cambridge School of Clinical Medicine Rag-1 and Rag-2 genes during B lymphocyte develop- Cambridge CB2 2SP ment (Billips et al., 1995). United Kingdom The CD19±CD21 complex achieves these biological ² Departments of Medicine and Microbiology responses by synergistically enhancing signaling through University of Alabama, Birmingham mIg. Coligating CD19 or CD21 to mIg lowers the number Birmingham Veterans Affairs Medical Center of mIg required for inducing increases in intracellular 21 21 Birmingham, Alabama 35294 Ca concentration ([Ca ]i) (Carter et al.,1991; Dempsey ³ National Institute for Medical Research et al., 1996) and the proliferation of B lymphocytes (Car- The Ridgeway ter and Fearon, 1992). The costimulatory effect of CD19 21 London NW7 1AA on [Ca ]i is associated with the enhanced generation United Kingdom of inositol 1,4,5-trisphosphate [I(1,4,5)P3]; ligating CD19 alone also generates I(1,4,5)P3, although the amounts are less. -
Ck1δ Over-Expressing Mice Display ADHD-Like Behaviors, Frontostriatal Neuronal Abnormalities and Altered Expressions of ADHD-Candidate Genes
Molecular Psychiatry (2020) 25:3322–3336 https://doi.org/10.1038/s41380-018-0233-z ARTICLE CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes 1 1 1 2 1 1 1 Mingming Zhou ● Jodi Gresack ● Jia Cheng ● Kunihiro Uryu ● Lars Brichta ● Paul Greengard ● Marc Flajolet Received: 8 November 2017 / Revised: 4 July 2018 / Accepted: 18 July 2018 / Published online: 19 October 2018 © Springer Nature Limited 2018 Abstract The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D- amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine- induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as 1234567890();,: 1234567890();,: well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model. -
VAV2 Is Required for DNA Repair and Implicated in Cancer Radiotherapy Resistance
Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance Weiling Liu1, Chuanwang Miao1, Shaosen Zhang1, Yachen Liu1, Xiangjie Niu1, Yiyi Xi1, Wenjia Guo2,3, Jiahui Chu4, Ai Lin1, Hongjin Liu1, ✉ Xinyu Yang1, Xinjie Chen1, Ce Zhong1, Yuling Ma1, Yuqian Wang1, Shihao Zhu1, Shuning Liu1, Wen Tan1, Dongxin Lin 1,5,6,7 and ✉ Chen Wu1,6,7 Radiotherapy remains the mainstay for treatment of various types of human cancer; however, the clinical efficacy is often limited by radioresistance, in which the underlying mechanism is largely unknown. Here, using esophageal squamous cell carcinoma (ESCC) as a model, we demonstrate that guanine nucleotide exchange factor 2 (VAV2), which is overexpressed in most human cancers, plays an important role in primary and secondary radioresistance. We have discovered for the first time that VAV2 is required for the Ku70/Ku80 complex formation and participates in non-homologous end joining repair of DNA damages caused by ionizing radiation. We show that VAV2 overexpression substantially upregulates signal transducer and activator of transcription 1 (STAT1) and the STAT1 inhibitor Fludarabine can significantly promote the sensitivity of radioresistant patient-derived ESCC xenografts in vivo in mice to radiotherapy. These results shed new light on the mechanism of cancer radioresistance, which may be important for improving clinical radiotherapy. Signal Transduction and Targeted Therapy (2021) 6:322; https://doi.org/10.1038/s41392-021-00735-9 1234567890();,: INTRODUCTION and manageable.12,13 Unfortunately, the efficacy of radiotherapy for Resistance to radiotherapy is one of the well-known hallmarks of ESCC is modest and disparate in patients due to the radioresistance cancer. -
Role of the Oncogene Vav2 in Lung Tumorigenesis
Role of the oncogene Vav2 in lung tumorigenesis Regina Bou Puerto Dirigido por: Dr. Xosé R. Bustelo Codirigido por: Dra. Myriam Cuadrado TRABAJO DE FIN DE MÁSTER MÁSTER EN BIOLOGÍA Y CLÍNICA DEL CÁNCER SALAMANCA, 20 de junio 2016 INDEX ABSTRACT . - 1 - 1 | INTRODUCTION . - 2 - 1.1 Rho GTPases: function and regulation…………………………………….2 1.2 The Vav family of GEFs for Rho GTPases………………………………....2 1.3 Rho GTPases and Vav GEFs: implication in cancer……………………..3 1.4 Vav2 in lung tumorigenesis………………………………………………...4 1.4.1 Introduction to the model of study 1.4.2 Importance of Vav2 in the formation of lung tumors 2 | MATERIALS AND METHODS . - 6 - 3 | RESULTS AND DISCUSSION. - 9 - 3.1 Role of Vav2 in lung homeostasis………...............………..........................10 3.2 Generation of Vav2-KO cells using CRISPR-Cas9 technology………….11 3.3 Validation of Vav2 knockdown cell lines………………............................13 3.4 Vav2-deficient cells show a decrease in cell proliferation………………..14 3.5 Vav2-deficient cells show a decrease in cell survival………………..........15 3.6 Rescue of Vav2 knockdown cell lines………………..................................16 3.7 Overexpression of RhoA, Rac1 and Cdc42 in Vav2-deficient cells……...18 3.8 Overexpression of Vav3 in Vav2-deficient cells………………..................20 4 | CONCLUSIONS AND FUTURE WORK . - 21 - 5 | REFERENCES . - 21 - I ABSTRACT Vav proteins are a family of guanosine nucleotide exchange factors (GEFs) for the Rho family of GTPases. They regulate the exchange of GDP for GTP and the subsequent activation of Rho GTPases. These proteins control in turn a variety of cellular processes which include proliferation, migration or gene transcription, among others. -
(P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds. -
Macrophage Activation JUNB Is a Key Transcriptional Modulator Of
JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana, Alyssa Baccarella, Nidhi Pancholi, Miles A. Pufall, De'Broski R. Herbert and Charles C. Kim This information is current as of October 2, 2021. J Immunol 2015; 194:177-186; Prepublished online 3 December 2014; doi: 10.4049/jimmunol.1401595 http://www.jimmunol.org/content/194/1/177 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/12/03/jimmunol.140159 Material 5.DCSupplemental References This article cites 40 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/194/1/177.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana,* Alyssa Baccarella,* Nidhi Pancholi,* Miles A. -
The Stimulus Murine B Cells Determined by the Nature of Phosphatidylinositol 3-Kinase Activation in Vav-Dependent and Vav-Indepe
Vav-Dependent and Vav-Independent Phosphatidylinositol 3-Kinase Activation in Murine B Cells Determined by the Nature of the Stimulus This information is current as of September 26, 2021. Elena Vigorito, Giuseppe Bardi, Janet Glassford, Eric W.-F. Lam, Elizabeth Clayton and Martin Turner J Immunol 2004; 173:3209-3214; ; doi: 10.4049/jimmunol.173.5.3209 http://www.jimmunol.org/content/173/5/3209 Downloaded from References This article cites 38 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/173/5/3209.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Vav-Dependent and Vav-Independent Phosphatidylinositol 3-Kinase Activation in Murine B Cells Determined by the Nature of the Stimulus1 Elena Vigorito,2* Giuseppe Bardi,* Janet Glassford,† Eric W.-F. -
Accelerating Matchmaking of Novel Dysmorphology Syndromes Through Clinical and Genomic Characterization of a Large Cohort
ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort Ranad Shaheen, PhD1, Nisha Patel, PhD1, Hanan Shamseldin, MSc1, Fatema Alzahrani, BSc1, Ruah Al-Yamany, MD1, Agaadir ALMoisheer, MSc1, Nour Ewida, BSc1, Shamsa Anazi, MSc1, Maha Alnemer, MD2, Mohamed Elsheikh, MD3, Khaled Alfaleh, MD3,4, Muneera Alshammari, MD4, Amal Alhashem, MD5, Abdullah A. Alangari, MD4, Mustafa A. Salih, MD4, Martin Kircher, MD6, Riza M. Daza, PhD6, Niema Ibrahim, BSc1, Salma M. Wakil, PhD1, Ahmed Alaqeel, MD7, Ikhlas Altowaijri, MD7, Jay Shendure, MD, PhD6, Amro Al-Habib, MD7, Eissa Faqieh, MD8 and Fowzan S. Alkuraya, MD1,9 Purpose: Dysmorphology syndromes are among the most common and C3ORF17). A significant minority of the phenotypes (6/31, 19%), referrals to clinical genetics specialists. Inability to match the dysmor- however, were caused by genes known to cause Mendelian pheno- phology pattern to a known syndrome can pose a major diagnostic chal- types, thus expanding the phenotypic spectrum of the diseases linked lenge. With an aim to accelerate the establishment of new syndromes to these genes. The conspicuous inheritance pattern and the highly and their genetic etiology, we describe our experience with multiplex specific phenotypes appear to have contributed to the high yield consanguineous families that appeared to represent novel autosomal (90%) of plausible molecular diagnoses in our study cohort. recessive dysmorphology syndromes at the time of evaluation. Conclusion: Reporting detailed clinical and genomic analysis of Methods: Combined autozygome/exome analysis of multiplex a large series of apparently novel dysmorphology syndromes will consanguineous families with apparently novel dysmorphology syn- likely lead to a trend to accelerate the establishment of novel syn- dromes. -
A Novel Predictive and Prognostic Scoring for Progressive Meningioma
cancers Article MPscore: A Novel Predictive and Prognostic Scoring for Progressive Meningioma Feili Liu 1,2,3,4, Jin Qian 5 and Chenkai Ma 6,* 1 Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; [email protected] 2 Neurosurgical Institute, Fudan University, Shanghai 200040, China 3 Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China 4 Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China 5 Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA; [email protected] 6 Department of Surgery, the University of Melbourne, Melbourne 3050, Australia * Correspondence: [email protected] Simple Summary: Subtyping for meningioma is urgently required to stratify the patients with high risks of recurrence and progression due to the intertumoral heterogeneity in meningioma. Here, we performed a consensus clustering of 179 meningiomas and identified progressive subtype (subtype 3) based the transcriptome profiles. Loss of chromosome 1q along with Neurofibromin 2 (NF2) mutation or loss of chromosome 22p is exclusively presented in subtype 3 meningioma. DNA methylation analyses of meningioma subtypes also suggested hypermethylation was observed in Citation: Liu, F.; Qian, J.; Ma, C. subtype 3 meningioma. Our findings identified low expression of Alkaline Phosphatase (ALPL) is MPscore: A Novel Predictive and Prognostic Scoring for Progressive the most significant feature in progressive subtype of meningioma. We constructed and validated a Meningioma. Cancers 2021, 13, 1113. meningioma progression score (MPscore) to characterize the progressive phenotype in meningioma. https://doi.org/10.3390/ The predictive accuracy has also been validated in three independent cohorts. -
Gene Ontology Functional Annotations and Pleiotropy
Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question