Matrix & Power Series Methods

Total Page:16

File Type:pdf, Size:1020Kb

Matrix & Power Series Methods ii MATRIX AND POWER SERIES METHODS Mathematics 306 All You Ever Wanted to Know About Matrix Algebra and Infinite Series But Were Afraid To Ask By John W. Lee Department of Mathematics Oregon State University January 2006 Contents Introduction ix I Background and Review 1 1ComplexNumbers 3 1.1Goals................................. 3 1.2Overview............................... 3 1.3TheComplexNumberSystem.................... 4 1.4PropertiesofAbsoluteValuesandComplexConjugates..... 8 1.5TheComplexPlane......................... 8 1.6CirclesintheComplexPlane.................... 12 1.7ComplexFunctions.......................... 14 1.8SuggestedProblems......................... 15 2 Vectors, Lines, and Planes 19 2.1Goals................................. 19 2.2Overview............................... 19 2.3Vectors................................ 19 2.4DotProducts............................. 24 2.5RowandColumnVectors...................... 27 2.6LinesandPlanes........................... 28 2.7SuggestedProblems......................... 30 II Matrix Methods 33 3 Linear Equations 35 3.1Goals................................. 35 3.2Overview............................... 35 3.3ThreeBasicPrinciples........................ 36 3.4SystematicEliminationofUnknowns................ 40 3.5Non-SquareSystems......................... 45 3.6 EfficientEvaluationofDeterminants................ 47 iii iv CONTENTS 3.7ComplexLinearSystems....................... 48 3.8SuggestedProblems......................... 48 4 Matrices and Linear Systems 51 4.1Goals................................. 51 4.2Overview............................... 51 4.3BasicMatrixOperations....................... 51 4.4LinearSystemsinMatrixForm................... 55 4.5TheInverseofaSquareMatrix................... 57 4.6TransposeofaMatrix........................ 60 4.7SuggestedProblems......................... 60 5 Linear Dependence and Independence 65 5.1Goals................................. 65 5.2Overview............................... 65 5.3DependenceandIndependence................... 65 5.4SuggestedProblems......................... 71 6 Matrices and Linear Transformations 73 6.1Goals................................. 73 6.2Overview............................... 73 6.3MatricesasTransformations..................... 73 6.4MatrixofaLinearTransformation................. 76 6.5Projections.............................. 80 6.6SuggestedProblems......................... 83 7 Eigenvalue Problems 87 7.1Goals................................. 87 7.2Overview............................... 87 7.3BasicProperties........................... 88 7.4SymmetricMatrices......................... 94 7.5SuggestedProblems......................... 99 8 Catch Up and Review 103 III Series Methods 107 9 Taylor Polynomial Approximation 109 9.1Goals.................................109 9.2OverviewandaGlanceAhead...................109 9.3TaylorPolynomials..........................110 9.4ErrorinApproximation.......................113 9.5OtherBasePoints..........................115 9.6SuggestedProblems.........................116 CONTENTS v 10 Infinite Series 121 10.1Goals.................................121 10.2Overview...............................121 10.3Convergence,Divergence,andSum.................121 10.4GeometricSeries...........................125 10.5SeriesofFunctions..........................127 10.6SeriesWithComplexTerms.....................128 10.7PowerSeries..............................129 10.8AlgebraicPropertiesofSeries....................129 10.9SuggestedProblems.........................129 11 Taylor Series Representations 133 11.1Goals.................................133 11.2Overview...............................133 11.3TaylorSeries.............................134 11.4 When is f (x) theSumofitsTaylorSeries?............135 11.5OtherBasePoints..........................137 11.6SuggestedProblems.........................138 12 Series With Nonnegative Terms 141 12.1Goals.................................141 12.2Overview...............................141 12.3SerieswithNonnegativeTerms...................142 12.4TheHarmonicSeries.........................143 12.5ImproperIntegrals..........................144 12.6TheIntegralTest...........................145 12.7ApproximatingSums.........................148 12.8SuggestedProblems.........................149 13 Comparison Tests 153 13.1Goals.................................153 13.2Overview...............................153 13.3BasicComparisonTest........................153 13.4LimitComparisonTest........................155 13.5SuggestedProblems.........................156 14 Alternating Series, Absolute Convergence 159 14.1Goals.................................159 14.2Overview...............................159 14.3AlternatingSeries..........................160 14.4AbsoluteConvergence........................162 14.5ConditionalVersusAbsoluteConvergence.............164 14.6SuggestedProblems.........................164 vi CONTENTS 15 Root and Ratio Tests 167 15.1Goals.................................167 15.2Overview...............................167 15.3TheRootTest............................167 15.4TheRatioTest............................169 15.5ApproximationofSums.......................172 15.6SpecialLimits.............................174 15.7SuggestedProblems.........................174 16 Power Series 179 16.1Goals.................................179 16.2Overview...............................179 16.3ConvergenceofPowerSeries.....................180 16.4AlgebraicProperties.........................183 16.5GeneralPowerSeries.........................184 16.6SuggestedProblems.........................185 17 Analytic Properties of Power Series 189 17.1Goals.................................189 17.2Overview...............................189 17.3CalculusandPowerSeries......................190 17.4UniquenessofPowerSeriesRepresentations............191 17.5Applications..............................192 17.6VariationsonaTheme........................195 17.7Term-by-TermOperationsRevisited................195 17.8 Power Series and DifferentialEquations..............197 17.9SuggestedProblems.........................202 18 Power Series and Complex Calculus 207 18.1Goals.................................207 18.2Overview...............................207 18.3 DifferentialCalculusandPowerSeries...............207 18.4EulerIdentities............................210 18.5SuggestedProblems.........................211 19CatchUpandReview 215 IV Supplemental Material 219 A Lab/Recitation Projects 221 A.1GroupProjects............................221 A.2EnrichmentProjects:.........................255 CONTENTS vii BSampleExams 271 B.1SampleMidterms...........................273 B.2SampleFinals.............................285 CSelectedAnswers 307 viii CONTENTS Introduction WELCOME TO MTH 306! ix x Introduction READ THIS INTRODUCTION!!! *********************** DON’T SKIP IT! REALLY! The material for MTH 306 is arranged in 19 lessons. Each lesson, except for the two catch up and review lessons, has the following format: LESSON Topictobecovered GOALS What you are supposed to learn TEXT Main ideas highlighted and discussed SUGGESTED PROBLEMS Homework You should have the calculus text you used for MTH 251-254. That text also includes some topics covered in this course. You may find it helpful to use you calculus text as a complement to the required spiral-bound text for MTH 306. More details follow. READ ON!!!! Introduction xi PREREQUISITES The OSU General Catalog lists MTH 252, Integral Calculus, as the prereq- uisite for MTH 306 because this course adequately prepares you for the infinite series part of MTH 306; however, MTH 252 leaves a small gap in preparation for the matrix and linear algebra part of MTH 306 related to 3-dimensional Carte- sian coordinates and elementary properties of 2-and3-dimensional vectors. If you have taken MTH 254, Vector Calculus I, you are more than adequately prepared for the matrix and linear algebra part of MTH 306. If not, you can make up any gap in your background with a little self-study of 3-dimensional Cartesian coordinates and of the elementary properties of 2-and3-dimensional vectors. Skim Lesson 2 to see the background in vectors you are expected to have. Then do some self-study before Lesson 3 is covered in class. Just go to the OSU Library, check out any calculus book or precalculus book that covers the elements of vectors in 2-and3-dimensions, and study the material that is coveredinLesson2. THINGS TO WATCH FOR AND DO Skim each upcoming lesson before youcometoclass.Readitagain, carefully, afterwards. It will direct your attention to key points. Use the lesson first to help you learn the material and later to review for tests. Suggested problems should be solved shortly after theclasslecture-nottwo or three days after! The problem sets are labeled as “suggested problems” because your instruc- tor may choose to omit some problems, add other problems, or give entirely different problem assignments. Be on your toes! IN THE END IT IS UP TO YOU Mathematics is not a spectator sport! To learn mathematics you must get fully involved. Take notes during the lectures. Think hard about difficult points. Don’t let confusion stand. Get help as soon as difficulties arise. Don’t wait. The Mathematics Learning Center is a valuable resource; use it. So is your instructor. Attend office hours regularly or make an appointment to get help. Keep a notebook with your neatly written reworked lecture notes and solved homework problems. This will help you organize your study, prepare for tests, and provide
Recommended publications
  • Projects Applying Linear Algebra to Calculus
    PROJECTS APPLYING LINEAR ALGEBRA TO CALCULUS Dr. Jason J. Molitierno Department of Mathematics Sacred Heart University Fairfield, CT 06825-1000 MAJOR PROBLEMS IN TEACHING A LINEAR ALGEBRA CLASS: • Having enough time in the semester to cover the syllabus. • Some problems are long and involved. ◦ Solving Systems of Equations. ◦ Finding Eigenvalues and Eigenvectors • Concepts can be difficult to visualize. ◦ Rotation and Translation of Vectors in multi-dimensioanl space. ◦ Solutions to systems of equations and systems of differential equations. • Some problems may be repetitive. A SOLUTION TO THESE ISSUES: OUT OF CLASS PROJECTS. THE BENEFITS: • By having the students learn some material outside of class, you have more time in class to cover additional material that you may not get to otherwise. • Students tend to get lost when the professor does a long computation on the board. Students are like "scribes." • Using technology, students can more easily visualize concepts. • Doing the more repetitive problems outside of class cuts down on boredom inside of class. • Gives students another method of learning as an alternative to be lectured to. APPLICATIONS OF SYSTEMS OF LINEAR EQUATIONS: (taken from Lay, fifth edition) • Nutrition: • Electrical Currents: • Population Distribution: VISUALIZING LINEAR TRANSFORMATIONS: in each of the five exercises below, do the following: (a) Find the matrix A that performs the desired transformation. (Note: In Exercises 4 and 5 where there are two transformations, multiply the two matrices with the first transformation matrix being on the right.) (b) Let T : <2 ! <2 be the transformation T (x) = Ax where A is the matrix you found in part (a). Find T (2; 3).
    [Show full text]
  • Direct Shear Mapping – a New Weak Lensing Tool
    MNRAS 451, 2161–2173 (2015) doi:10.1093/mnras/stv1083 Direct shear mapping – a new weak lensing tool C. O. de Burgh-Day,1,2,3‹ E. N. Taylor,1,3‹ R. L. Webster1,3‹ and A. M. Hopkins2,3 1School of Physics, David Caro Building, The University of Melbourne, Parkville VIC 3010, Australia 2The Australian Astronomical Observatory, PO Box 915, North Ryde NSW 1670, Australia 3ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australian National University, Canberra, ACT 2611, Australia Accepted 2015 May 12. Received 2015 February 16; in original form 2013 October 24 ABSTRACT We have developed a new technique called direct shear mapping (DSM) to measure gravita- tional lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmet- ric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spa- tially resolved spectroscopic images (i.e.
    [Show full text]
  • Final Exam Outline 1.1, 1.2 Scalars and Vectors in R N. the Magnitude
    Final Exam Outline 1.1, 1.2 Scalars and vectors in Rn. The magnitude of a vector. Row and column vectors. Vector addition. Scalar multiplication. The zero vector. Vector subtraction. Distance in Rn. Unit vectors. Linear combinations. The dot product. The angle between two vectors. Orthogonality. The CBS and triangle inequalities. Theorem 1.5. 2.1, 2.2 Systems of linear equations. Consistent and inconsistent systems. The coefficient and augmented matrices. Elementary row operations. The echelon form of a matrix. Gaussian elimination. Equivalent matrices. The reduced row echelon form. Gauss-Jordan elimination. Leading and free variables. The rank of a matrix. The rank theorem. Homogeneous systems. Theorem 2.2. 2.3 The span of a set of vectors. Linear dependence. Linear dependence and independence. Determining n whether a set {~v1, . ,~vk} of vectors in R is linearly dependent or independent. 3.1, 3.2 Matrix operations. Scalar multiplication, matrix addition, matrix multiplication. The zero and identity matrices. Partitioned matrices. The outer product form. The standard unit vectors. The transpose of a matrix. A system of linear equations in matrix form. Algebraic properties of the transpose. 3.3 The inverse of a matrix. Invertible (nonsingular) matrices. The uniqueness of the solution to Ax = b when A is invertible. The inverse of a nonsingular 2 × 2 matrix. Elementary matrices and EROs. Equivalent conditions for invertibility. Using Gauss-Jordan elimination to invert a nonsingular matrix. Theorems 3.7, 3.9. n n n 3.5 Subspaces of R . {0} and R as subspaces of R . The subspace span(v1,..., vk). The the row, column and null spaces of a matrix.
    [Show full text]
  • Vol 45 Ams / Maa Anneli Lax New Mathematical Library
    45 AMS / MAA ANNELI LAX NEW MATHEMATICAL LIBRARY VOL 45 10.1090/nml/045 When Life is Linear From Computer Graphics to Bracketology c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2014959438 Print edition ISBN: 978-0-88385-649-9 Electronic edition ISBN: 978-0-88385-988-9 Printed in the United States of America Current Printing (last digit): 10987654321 When Life is Linear From Computer Graphics to Bracketology Tim Chartier Davidson College Published and Distributed by The Mathematical Association of America To my parents, Jan and Myron, thank you for your support, commitment, and sacrifice in the many nonlinear stages of my life Committee on Books Frank Farris, Chair Anneli Lax New Mathematical Library Editorial Board Karen Saxe, Editor Helmer Aslaksen Timothy G. Feeman John H. McCleary Katharine Ott Katherine S. Socha James S. Tanton ANNELI LAX NEW MATHEMATICAL LIBRARY 1. Numbers: Rational and Irrational by Ivan Niven 2. What is Calculus About? by W. W. Sawyer 3. An Introduction to Inequalities by E. F.Beckenbach and R. Bellman 4. Geometric Inequalities by N. D. Kazarinoff 5. The Contest Problem Book I Annual High School Mathematics Examinations 1950–1960. Compiled and with solutions by Charles T. Salkind 6. The Lore of Large Numbers by P.J. Davis 7. Uses of Infinity by Leo Zippin 8. Geometric Transformations I by I. M. Yaglom, translated by A. Shields 9. Continued Fractions by Carl D. Olds 10. Replaced by NML-34 11. Hungarian Problem Books I and II, Based on the Eotv¨ os¨ Competitions 12. 1894–1905 and 1906–1928, translated by E.
    [Show full text]
  • Multi-View Metric Learning in Vector-Valued Kernel Spaces
    Multi-view Metric Learning in Vector-valued Kernel Spaces Riikka Huusari Hachem Kadri Cécile Capponi Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France Abstract unlabeled examples [26]; the latter tries to efficiently combine multiple kernels defined on each view to exploit We consider the problem of metric learning for information coming from different representations [11]. multi-view data and present a novel method More recently, vector-valued reproducing kernel Hilbert for learning within-view as well as between- spaces (RKHSs) have been introduced to the field of view metrics in vector-valued kernel spaces, multi-view learning for going further than MKL by in- as a way to capture multi-modal structure corporating in the learning model both within-view and of the data. We formulate two convex opti- between-view dependencies [20, 14]. It turns out that mization problems to jointly learn the metric these kernels and their associated vector-valued repro- and the classifier or regressor in kernel feature ducing Hilbert spaces provide a unifying framework for spaces. An iterative three-step multi-view a number of previous multi-view kernel methods, such metric learning algorithm is derived from the as co-regularized multi-view learning and manifold reg- optimization problems. In order to scale the ularization, and naturally allow to encode within-view computation to large training sets, a block- as well as between-view similarities [21]. wise Nyström approximation of the multi-view Kernels of vector-valued RKHSs are positive semidefi- kernel matrix is introduced. We justify our ap- nite matrix-valued functions. They have been applied proach theoretically and experimentally, and with success in various machine learning problems, such show its performance on real-world datasets as multi-task learning [10], functional regression [15] against relevant state-of-the-art methods.
    [Show full text]
  • Introduction to MATLAB®
    Introduction to MATLAB® Lecture 2: Vectors and Matrices Introduction to MATLAB® Lecture 2: Vectors and Matrices 1 / 25 Vectors and Matrices Vectors and Matrices Vectors and matrices are used to store values of the same type A vector can be either column vector or a row vector. Matrices can be visualized as a table of values with dimensions r × c (r is the number of rows and c is the number of columns). Introduction to MATLAB® Lecture 2: Vectors and Matrices 2 / 25 Vectors and Matrices Creating row vectors Place the values that you want in the vector in square brackets separated by either spaces or commas. e.g 1 >> row vec=[1 2 3 4 5] 2 row vec = 3 1 2 3 4 5 4 5 >> row vec=[1,2,3,4,5] 6 row vec= 7 1 2 3 4 5 Introduction to MATLAB® Lecture 2: Vectors and Matrices 3 / 25 Vectors and Matrices Creating row vectors - colon operator If the values of the vectors are regularly spaced, the colon operator can be used to iterate through these values. (first:last) produces a vector with all integer entries from first to last e.g. 1 2 >> row vec = 1:5 3 row vec = 4 1 2 3 4 5 Introduction to MATLAB® Lecture 2: Vectors and Matrices 4 / 25 Vectors and Matrices Creating row vectors - colon operator A step value can also be specified with another colon in the form (first:step:last) 1 2 >>odd vec = 1:2:9 3 odd vec = 4 1 3 5 7 9 Introduction to MATLAB® Lecture 2: Vectors and Matrices 5 / 25 Vectors and Matrices Exercise In using (first:step:last), what happens if adding the step value would go beyond the range specified by last? e.g: 1 >>v = 1:2:6 Introduction to MATLAB® Lecture 2: Vectors and Matrices 6 / 25 Vectors and Matrices Exercise Use (first:step:last) to generate the vector v1 = [9 7 5 3 1 ]? Introduction to MATLAB® Lecture 2: Vectors and Matrices 7 / 25 Vectors and Matrices Creating row vectors - linspace function linspace (Linearly spaced vector) 1 >>linspace(x,y,n) linspace creates a row vector with n values in the inclusive range from x to y.
    [Show full text]
  • Math 102 -- Linear Algebra I -- Study Guide
    Math 102 Linear Algebra I Stefan Martynkiw These notes are adapted from lecture notes taught by Dr.Alan Thompson and from “Elementary Linear Algebra: 10th Edition” :Howard Anton. Picture above sourced from (http://i.imgur.com/RgmnA.gif) 1/52 Table of Contents Chapter 3 – Euclidean Vector Spaces.........................................................................................................7 3.1 – Vectors in 2-space, 3-space, and n-space......................................................................................7 Theorem 3.1.1 – Algebraic Vector Operations without components...........................................7 Theorem 3.1.2 .............................................................................................................................7 3.2 – Norm, Dot Product, and Distance................................................................................................7 Definition 1 – Norm of a Vector..................................................................................................7 Definition 2 – Distance in Rn......................................................................................................7 Dot Product.......................................................................................................................................8 Definition 3 – Dot Product...........................................................................................................8 Definition 4 – Dot Product, Component by component..............................................................8
    [Show full text]
  • MATRICES Part 2 3. Linear Equations
    MATRICES part 2 (modified content from Wikipedia articles on matrices http://en.wikipedia.org/wiki/Matrix_(mathematics)) 3. Linear equations Matrices can be used to compactly write and work with systems of linear equations. For example, if A is an m-by-n matrix, x designates a column vector (i.e., n×1-matrix) of n variables x1, x2, ..., xn, and b is an m×1-column vector, then the matrix equation Ax = b is equivalent to the system of linear equations a1,1x1 + a1,2x2 + ... + a1,nxn = b1 ... am,1x1 + am,2x2 + ... + am,nxn = bm . For example, 3x1 + 2x2 – x3 = 1 2x1 – 2x2 + 4x3 = – 2 – x1 + 1/2x2 – x3 = 0 is a system of three equations in the three variables x1, x2, and x3. This can be written in the matrix form Ax = b where 3 2 1 1 1 A = 2 2 4 , x = 2 , b = 2 1 1/2 −1 푥3 0 � − � �푥 � �− � A solution to− a linear system− is an assignment푥 of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by x1 = 1 x2 = – 2 x3 = – 2 since it makes all three equations valid. A linear system may behave in any one of three possible ways: 1. The system has infinitely many solutions. 2. The system has a single unique solution. 3. The system has no solution. 3.1. Solving linear equations There are several algorithms for solving a system of linear equations. Elimination of variables The simplest method for solving a system of linear equations is to repeatedly eliminate variables.
    [Show full text]
  • Karhunen-Loève Analysis for Weak Gravitational Lensing
    c Copyright 2012 Jacob T. Vanderplas arXiv:1301.6657v1 [astro-ph.CO] 28 Jan 2013 Karhunen-Lo`eve Analysis for Weak Gravitational Lensing Jacob T. Vanderplas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Andrew Connolly, Chair Bhuvnesh Jain Andrew Becker Program Authorized to Offer Degree: Department of Astronomy University of Washington Abstract Karhunen-Lo`eve Analysis for Weak Gravitational Lensing Jacob T. Vanderplas Chair of the Supervisory Committee: Professor Andrew Connolly Department of Astronomy In the past decade, weak gravitational lensing has become an important tool in the study of the universe at the largest scale, giving insights into the distribution of dark matter, the expansion of the universe, and the nature of dark energy. This thesis research explores several applications of Karhunen-Lo`eve (KL) analysis to speed and improve the comparison of weak lensing shear catalogs to theory in order to constrain cosmological parameters in current and future lensing surveys. This work addresses three related aspects of weak lensing analysis: Three-dimensional Tomographic Mapping: (Based on work published in VanderPlas et al., 2011) We explore a new fast approach to three-dimensional mass mapping in weak lensing surveys. The KL approach uses a KL-based filtering of the shear signal to reconstruct mass structures on the line-of-sight, and provides a unified framework to evaluate the efficacy of linear reconstruction techniques. We find that the KL-based filtering leads to near-optimal angular resolution, and computation times which are faster than previous approaches.
    [Show full text]
  • Lesson 1 Introduction to MATLAB
    Math 323 Linear Algebra and Matrix Theory I Fall 1999 Dr. Constant J. Goutziers Department of Mathematical Sciences [email protected] Lesson 1 Introduction to MATLAB MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows easy solution of many technical computing problems, especially those with matrix and vector formulations. For many colleges and universities MATLAB is the Linear Algebra software of choice. The name MATLAB stands for matrix laboratory. 1.1 Row and Column vectors, Formatting In linear algebra we make a clear distinction between row and column vectors. • Example 1.1.1 Entering a row vector. The components of a row vector are entered inside square brackets, separated by blanks. v=[1 2 3] v = 1 2 3 • Example 1.1.2 Entering a column vector. The components of a column vector are also entered inside square brackets, but they are separated by semicolons. w=[4; 5/2; -6] w = 4.0000 2.5000 -6.0000 • Example 1.1.3 Switching between a row and a column vector, the transpose. In MATLAB it is possible to switch between row and column vectors using an apostrophe. The process is called "taking the transpose". To illustrate the process we print v and w and generate the transpose of each of these vectors. Observe that MATLAB commands can be entered on the same line, as long as they are separated by commas. v, vt=v', w, wt=w' v = 1 2 3 vt = 1 2 3 w = 4.0000 2.5000 -6.0000 wt = 4.0000 2.5000 -6.0000 • Example 1.1.4 Formatting.
    [Show full text]
  • Linear Algebra I: Vector Spaces A
    Linear Algebra I: Vector Spaces A 1 Vector spaces and subspaces 1.1 Let F be a field (in this book, it will always be either the field of reals R or the field of complex numbers C). A vector space V D .V; C; o;˛./.˛2 F// over F is a set V with a binary operation C, a constant o and a collection of unary operations (i.e. maps) ˛ W V ! V labelled by the elements of F, satisfying (V1) .x C y/ C z D x C .y C z/, (V2) x C y D y C x, (V3) 0 x D o, (V4) ˛ .ˇ x/ D .˛ˇ/ x, (V5) 1 x D x, (V6) .˛ C ˇ/ x D ˛ x C ˇ x,and (V7) ˛ .x C y/ D ˛ x C ˛ y. Here, we write ˛ x and we will write also ˛x for the result ˛.x/ of the unary operation ˛ in x. Often, one uses the expression “multiplication of x by ˛”; but it is useful to keep in mind that what we really have is a collection of unary operations (see also 5.1 below). The elements of a vector space are often referred to as vectors. In contrast, the elements of the field F are then often referred to as scalars. In view of this, it is useful to reflect for a moment on the true meaning of the axioms (equalities) above. For instance, (V4), often referred to as the “associative law” in fact states that the composition of the functions V ! V labelled by ˇ; ˛ is labelled by the product ˛ˇ in F, the “distributive law” (V6) states that the (pointwise) sum of the mappings labelled by ˛ and ˇ is labelled by the sum ˛ C ˇ in F, and (V7) states that each of the maps ˛ preserves the sum C.
    [Show full text]
  • Week 1 – Vectors and Matrices
    Week 1 – Vectors and Matrices Richard Earl∗ Mathematical Institute, Oxford, OX1 2LB, October 2003 Abstract Algebra and geometry of vectors. The algebra of matrices. 2x2 matrices. Inverses. Determinants. Simultaneous linear equations. Standard transformations of the plane. Notation 1 The symbol R2 denotes the set of ordered pairs (x, y) – that is the xy-plane. Similarly R3 denotes the set of ordered triples (x, y, z) – that is, three-dimensional space described by three co-ordinates x, y and z –andRn denotes a similar n-dimensional space. 1Vectors A vector can be thought of in two different ways. Let’s for the moment concentrate on vectors in the xy-plane. From one point of view a vector is just an ordered pair of numbers (x, y). We can associate this • vector with the point in R2 which has co-ordinates x and y. We call this vector the position vector of the point. From the second point of view a vector is a ‘movement’ or translation. For example, to get from • the point (3, 4) to the point (4, 5) we need to move ‘one to the right and one up’; this is the same movement as is required to move from ( 2, 3) to ( 1, 2) or from (1, 2) to (2, 1) . Thinking about vectors from this second point of− view,− all three− of− these movements− are the− same vector, because the same translation ‘one right, one up’ achieves each of them, even though the ‘start’ and ‘finish’ are different in each case. We would write this vector as (1, 1) .
    [Show full text]