Direct Shear Mapping – a New Weak Lensing Tool

Total Page:16

File Type:pdf, Size:1020Kb

Direct Shear Mapping – a New Weak Lensing Tool MNRAS 451, 2161–2173 (2015) doi:10.1093/mnras/stv1083 Direct shear mapping – a new weak lensing tool C. O. de Burgh-Day,1,2,3‹ E. N. Taylor,1,3‹ R. L. Webster1,3‹ and A. M. Hopkins2,3 1School of Physics, David Caro Building, The University of Melbourne, Parkville VIC 3010, Australia 2The Australian Astronomical Observatory, PO Box 915, North Ryde NSW 1670, Australia 3ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australian National University, Canberra, ACT 2611, Australia Accepted 2015 May 12. Received 2015 February 16; in original form 2013 October 24 ABSTRACT We have developed a new technique called direct shear mapping (DSM) to measure gravita- tional lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmet- ric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spa- tially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA). Key words: gravitational lensing: weak – galaxies: kinematics and dynamics – dark matter. lensing survey depends on the total survey area and the number 1 INTRODUCTION density of perfectly measured galaxies. The dominant source of Weak gravitational lensing maps matter distributions in the Uni- uncertainty in all of these methods is shape noise: the error in the verse, both baryonic and dark (e.g. Kaiser & Squires 1993). This measurement due to the intrinsic and random orientations of the paper explores the enhanced potential of weak lensing in three di- images in the sample. Using these techniques, one would typically mensions (Blain 2002; Morales 2006). We describe a methodology need ∼10 objects to measure a shear of 10 per cent on arcminute to obtain a shear measurement from a 3D data cube of a single scales. weakly lensed galaxy. This technique will allow us to measure the A powerful enhancement of the weak lensing method was pro- size and shape of dark matter distributions around individual galax- posed by Blain (2002), followed by Morales (2006). Theoretically, ies at low redshifts. the rotation curves of regularly rotating elliptical and spiral galaxies Conventional 2D weak lensing techniques rely on measuring the will have maximum and minimum values in the projected velocity (two-dimensional) shapes of many ( 100) images in a field. With maps. These coincide with the major and minor axes of the pro- the assumption that the images in the field should have no pre- jected 2D image. In gravitational lensing, the equivalence principle ferred orientation, one can infer the presence of a shear field if any requires that photons of different energies are affected similarly. correlation in alignments is detected. There are a number of statis- Thus weak lensing will shear the velocity maps and distort the 2D tical approaches (Kaiser, Squires & Broadhurst 1995; Refregier & image, causing the angle between maximum and minimum rotation Bacon 2003; Heymans et al. 2006;Bridleetal.2010)usedtoper- axes to deviate from 90◦. While there are other kinematic effects form this analysis. The statistical uncertainty of a particular weak which also introduce perturbations into the velocity map of a galaxy, weak gravitational lensing has a unique signature. An unsheared ve- locity map is symmetrical about the major and minor axis, while a E-mail: [email protected] (COdeB-D); [email protected] sheared velocity map loses these symmetries. Since we can predict (ENT); [email protected] (RLW) the properties expected in an unsheared velocity map (namely that C 2015 The Authors Downloaded fromPublished https://academic.oup.com/mnras/article-abstract/451/2/2161/1749032 by Oxford University Press on behalf of the Royal Astronomical Society by Swinburne University of Technology user on 21 March 2018 2162 C. O. de Burgh-Day et al. the angle between the major and minor axis is orthogonal, or put generation of synthetic galaxy data, and present the results of a suite another way, that the velocity is symmetrical about these axes), a of systematic tests of the DSM method. In Section 5, we present metric which measures the presence and strength of the shear field fits to low-redshift data from the literature, demonstrating the abil- between the observer and the background galaxy can be designed. ity of DSM to recover a null result. Conclusions are presented in Blain (2002) suggested using the distortion in the rotation curve Section 6. to measure shear. He fitted for shear in an inclined ring model using a Monte Carlo routine, concluding that while currently a typical shear could not be measured by this method, it would be possible 2 WEAK LENSING to measure it with future higher resolution surveys. Morales (2006) Lensing theory is well developed, and there are many derivations of suggested a similar method, but fitted for the entire velocity map. the relevant equations (e.g. Mortlock 1999; Bartelmann & Schneider This has the advantage of utilizing additional information from the 2001; Bartelmann 2010). velocity map, and potentially avoiding problems the concentric- Light travels along geodesics, and in the presence of massive ring method would encounter when fitting for shear in warped or bodies, geodesics are curved. As light passes massive bodies, its path disturbed discs (since in that case each concentric ring will recover is deflected, and a background image will be distorted, magnified, a different shear). Morales’ method involved measuring the angle shifted and duplicated. Weak gravitational lensing is the term used between the major and minor rotation axes, and obtaining a measure to describe minimal distortion of the background source with no of the shear strength from the deviation of the fitted angle from observable multiplication of the source image. orthogonal. For this paper, the focus is on linearizable weak lensing, that is, We have extended Morales’ work, and developed a technique to lensing where the distortions are small, and do not vary across the measure the shear vector directly from the 3D data cube of a single source. This class of lensing can be expressed as a single transfor- weakly lensed galaxy. Our technique is called direct shear map- mation matrix. It is this feature which forms the basis of the method ping (DSM) and utilizes a Monte Carlo Markov Chain (MCMC) by which the DSM shear values are determined. We will also restrict algorithm to search for asymmetries in the 3D data. The MCMC ourselves to individual lenses (e.g. galaxies or clusters), however 1 function used is called EMCEE (Foreman-Mackey et al. 2013). We this method is equally valid for measuring the cosmic lensing signal. have performed a suite of tests on simulated data to characterize the If one assumes the length-scales of the lensing mass distribution efficiency and accuracy of the fitting algorithm, and to understand are much smaller than the observer-lens distance, then the thin lens the limits of its fitting range. Additionally, we have tested the tech- approximation can be used. In the thin lens approximation, we nique on unsheared data to ensure we can recover a null result at project the lensing mass distribution on to a plane perpendicular to low redshift, and determine realistic systematic errors. the observer’s line of sight to obtain the surface mass density: Using a symmetry search method rather than focusing on the velocity axes directly allows us to use all the available data, giving (ξ) = dzρ(ξ, z), (1) a statistically better fit. This method is unique among weak lensing measurement methods in that it uses the velocity map of an object where ξ = x2 + y2 is a set of coordinates in the lens plane, and z to measure the shear field, and does not rely on fitting for the shape is the third coordinate parallel to the observer’s line of sight. Using of the galaxy. Rather than obtaining a single measure of the shear the weak field approximation, the deflection angle of light passing over a wide area of sky, we can determine a shear value for a single the lensing mass is then given by background galaxy. Hence, we are able to measure the mass of an G ξ − ξ individual foreground dark matter halo. 4 2 α(ξ) = d ξ (ξ ) , (2) We have demonstrated that we can measure shears as small as c2 |ξ − ξ |2 γ ∼ 0.01 in realistic simulations and expect to extend this to ob- where (ξ) is the (projected) surface mass density and servational data sets (Taylor et al, in preparation). Two-dimensional weak lensing methods are able to statistically measure the mass and M(< ξ) = d2ξ (ξ )(3) structure of an individual dark matter halo and establish its relation- ship to other observables, for example baryonic mass (eg Velander is the mass enclosed within ξ.
Recommended publications
  • Projects Applying Linear Algebra to Calculus
    PROJECTS APPLYING LINEAR ALGEBRA TO CALCULUS Dr. Jason J. Molitierno Department of Mathematics Sacred Heart University Fairfield, CT 06825-1000 MAJOR PROBLEMS IN TEACHING A LINEAR ALGEBRA CLASS: • Having enough time in the semester to cover the syllabus. • Some problems are long and involved. ◦ Solving Systems of Equations. ◦ Finding Eigenvalues and Eigenvectors • Concepts can be difficult to visualize. ◦ Rotation and Translation of Vectors in multi-dimensioanl space. ◦ Solutions to systems of equations and systems of differential equations. • Some problems may be repetitive. A SOLUTION TO THESE ISSUES: OUT OF CLASS PROJECTS. THE BENEFITS: • By having the students learn some material outside of class, you have more time in class to cover additional material that you may not get to otherwise. • Students tend to get lost when the professor does a long computation on the board. Students are like "scribes." • Using technology, students can more easily visualize concepts. • Doing the more repetitive problems outside of class cuts down on boredom inside of class. • Gives students another method of learning as an alternative to be lectured to. APPLICATIONS OF SYSTEMS OF LINEAR EQUATIONS: (taken from Lay, fifth edition) • Nutrition: • Electrical Currents: • Population Distribution: VISUALIZING LINEAR TRANSFORMATIONS: in each of the five exercises below, do the following: (a) Find the matrix A that performs the desired transformation. (Note: In Exercises 4 and 5 where there are two transformations, multiply the two matrices with the first transformation matrix being on the right.) (b) Let T : <2 ! <2 be the transformation T (x) = Ax where A is the matrix you found in part (a). Find T (2; 3).
    [Show full text]
  • Vol 45 Ams / Maa Anneli Lax New Mathematical Library
    45 AMS / MAA ANNELI LAX NEW MATHEMATICAL LIBRARY VOL 45 10.1090/nml/045 When Life is Linear From Computer Graphics to Bracketology c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2014959438 Print edition ISBN: 978-0-88385-649-9 Electronic edition ISBN: 978-0-88385-988-9 Printed in the United States of America Current Printing (last digit): 10987654321 When Life is Linear From Computer Graphics to Bracketology Tim Chartier Davidson College Published and Distributed by The Mathematical Association of America To my parents, Jan and Myron, thank you for your support, commitment, and sacrifice in the many nonlinear stages of my life Committee on Books Frank Farris, Chair Anneli Lax New Mathematical Library Editorial Board Karen Saxe, Editor Helmer Aslaksen Timothy G. Feeman John H. McCleary Katharine Ott Katherine S. Socha James S. Tanton ANNELI LAX NEW MATHEMATICAL LIBRARY 1. Numbers: Rational and Irrational by Ivan Niven 2. What is Calculus About? by W. W. Sawyer 3. An Introduction to Inequalities by E. F.Beckenbach and R. Bellman 4. Geometric Inequalities by N. D. Kazarinoff 5. The Contest Problem Book I Annual High School Mathematics Examinations 1950–1960. Compiled and with solutions by Charles T. Salkind 6. The Lore of Large Numbers by P.J. Davis 7. Uses of Infinity by Leo Zippin 8. Geometric Transformations I by I. M. Yaglom, translated by A. Shields 9. Continued Fractions by Carl D. Olds 10. Replaced by NML-34 11. Hungarian Problem Books I and II, Based on the Eotv¨ os¨ Competitions 12. 1894–1905 and 1906–1928, translated by E.
    [Show full text]
  • Multi-View Metric Learning in Vector-Valued Kernel Spaces
    Multi-view Metric Learning in Vector-valued Kernel Spaces Riikka Huusari Hachem Kadri Cécile Capponi Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France Abstract unlabeled examples [26]; the latter tries to efficiently combine multiple kernels defined on each view to exploit We consider the problem of metric learning for information coming from different representations [11]. multi-view data and present a novel method More recently, vector-valued reproducing kernel Hilbert for learning within-view as well as between- spaces (RKHSs) have been introduced to the field of view metrics in vector-valued kernel spaces, multi-view learning for going further than MKL by in- as a way to capture multi-modal structure corporating in the learning model both within-view and of the data. We formulate two convex opti- between-view dependencies [20, 14]. It turns out that mization problems to jointly learn the metric these kernels and their associated vector-valued repro- and the classifier or regressor in kernel feature ducing Hilbert spaces provide a unifying framework for spaces. An iterative three-step multi-view a number of previous multi-view kernel methods, such metric learning algorithm is derived from the as co-regularized multi-view learning and manifold reg- optimization problems. In order to scale the ularization, and naturally allow to encode within-view computation to large training sets, a block- as well as between-view similarities [21]. wise Nyström approximation of the multi-view Kernels of vector-valued RKHSs are positive semidefi- kernel matrix is introduced. We justify our ap- nite matrix-valued functions. They have been applied proach theoretically and experimentally, and with success in various machine learning problems, such show its performance on real-world datasets as multi-task learning [10], functional regression [15] against relevant state-of-the-art methods.
    [Show full text]
  • MATRICES Part 2 3. Linear Equations
    MATRICES part 2 (modified content from Wikipedia articles on matrices http://en.wikipedia.org/wiki/Matrix_(mathematics)) 3. Linear equations Matrices can be used to compactly write and work with systems of linear equations. For example, if A is an m-by-n matrix, x designates a column vector (i.e., n×1-matrix) of n variables x1, x2, ..., xn, and b is an m×1-column vector, then the matrix equation Ax = b is equivalent to the system of linear equations a1,1x1 + a1,2x2 + ... + a1,nxn = b1 ... am,1x1 + am,2x2 + ... + am,nxn = bm . For example, 3x1 + 2x2 – x3 = 1 2x1 – 2x2 + 4x3 = – 2 – x1 + 1/2x2 – x3 = 0 is a system of three equations in the three variables x1, x2, and x3. This can be written in the matrix form Ax = b where 3 2 1 1 1 A = 2 2 4 , x = 2 , b = 2 1 1/2 −1 푥3 0 � − � �푥 � �− � A solution to− a linear system− is an assignment푥 of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by x1 = 1 x2 = – 2 x3 = – 2 since it makes all three equations valid. A linear system may behave in any one of three possible ways: 1. The system has infinitely many solutions. 2. The system has a single unique solution. 3. The system has no solution. 3.1. Solving linear equations There are several algorithms for solving a system of linear equations. Elimination of variables The simplest method for solving a system of linear equations is to repeatedly eliminate variables.
    [Show full text]
  • Karhunen-Loève Analysis for Weak Gravitational Lensing
    c Copyright 2012 Jacob T. Vanderplas arXiv:1301.6657v1 [astro-ph.CO] 28 Jan 2013 Karhunen-Lo`eve Analysis for Weak Gravitational Lensing Jacob T. Vanderplas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Andrew Connolly, Chair Bhuvnesh Jain Andrew Becker Program Authorized to Offer Degree: Department of Astronomy University of Washington Abstract Karhunen-Lo`eve Analysis for Weak Gravitational Lensing Jacob T. Vanderplas Chair of the Supervisory Committee: Professor Andrew Connolly Department of Astronomy In the past decade, weak gravitational lensing has become an important tool in the study of the universe at the largest scale, giving insights into the distribution of dark matter, the expansion of the universe, and the nature of dark energy. This thesis research explores several applications of Karhunen-Lo`eve (KL) analysis to speed and improve the comparison of weak lensing shear catalogs to theory in order to constrain cosmological parameters in current and future lensing surveys. This work addresses three related aspects of weak lensing analysis: Three-dimensional Tomographic Mapping: (Based on work published in VanderPlas et al., 2011) We explore a new fast approach to three-dimensional mass mapping in weak lensing surveys. The KL approach uses a KL-based filtering of the shear signal to reconstruct mass structures on the line-of-sight, and provides a unified framework to evaluate the efficacy of linear reconstruction techniques. We find that the KL-based filtering leads to near-optimal angular resolution, and computation times which are faster than previous approaches.
    [Show full text]
  • Practical Computer Vision: Theory & Applications
    Practical Computer Vision: Theory & Applications Carmen Alonso Montes 23rd-27th November 2015 Contents Course Structure Basic concepts of Computer Vision Pixels Colour vs. Black&White Noise and linear filtering Image enhancement Some practical examples My first programme with images Image denoising Image enhancement Basic commands matlab Carmen Alonso Montes 2 Course Structure This course is an introductory course for students with very few practical knowledge on computer vision Resources available for students through BCAM website Course material: slides, exercises and examples What do you need for this course? The most important thing is your self-motivation! Programming: examples will be done in Matlab, and also, if needed, I will explain how to do it in OpenCV (C++) For those C++ or Phyton programmers, I suggest to use a proper code editor (eclipse, netbeans, …) Some examples of useful tools (not needed) but good to know Versioning: git, SVN Automatic documentation generation: Doxygen Project management: Redmine Carmen Alonso Montes 3 Course Structure: Contents Each class will last 2 hours and a half 50 min Theory (9:30-10:20) 10 min break 50 min Theory (10:30-11:20) 10 min break 30 hour practice (11:30-12:00) Each slide, will contain a blue box with the command in matlab, in case you want to try it during the lessons imread At the end of the slides, you will have a table with the commands used during the lessons, for a quick guide. Carmen Alonso Montes 4 Some good books Digital Image Processing, 3rd Ed. (DIP/3e) by Gonzalez and Woods, (2008) This is the bible in this domain Learning OpenCV, Computer Vision in C++ with the OpenCV Library, by Adrian Kaehler, Gary Bradski.
    [Show full text]
  • Algorithms for Designing Pop-Up Cards
    Algorithms for Designing Pop-Up Cards Zachary Abel∗ Erik D. Demainey Martin L. Demainey Sarah Eisenstaty Anna Lubiwz Andr´eSchulzx Diane L. Souvaine{ Giovanni Vigliettak Andrew Winslow{ Abstract We prove that every simple polygon can be made as a (2D) pop-up card/book that opens to any desired angle between 0 and 360◦. More precisely, given a simple polygon attached to the two walls of the open pop-up, our polynomial-time algorithm subdivides the polygon into a single-degree-of-freedom linkage structure, such that closing the pop-up flattens the linkage without collision. This result solves an open problem of Hara and Sugihara from 2009. We also show how to obtain a more efficient construction for the special case of orthogonal polygons, and how to make 3D orthogonal polyhedra, from pop-ups that open to 90◦, 180◦, 270◦, or 360◦. 1 Introduction Pop-up books have been entertaining children with their surprising and playful mechanics since their mass production in the 1970s. But the history of pop-ups is much older [27], and they were originally used for scientific and historical illustrations. The earliest known example of a \movable book" is Matthew Paris's Chronica Majora (c. 1250), which uses turnable disks (volvelle) to represent a calendar and uses flaps to illustrate maps. A more recent scientific example is George Spratt's Obstetric Tables (1850), which uses flaps to illustrate procedures for delivering babies including by Caesarean section. From the same year, Dean & Sons' Little Red Riding Hood (1850) is the first known movable book where a flat page rises into a 3D scene, though here it was actuated by pulling a string.
    [Show full text]
  • Generalized Multiple Correlation Coefficient As a Similarity
    Generalized Multiple Correlation Coefficient as a Similarity Measurement between Trajectories Julen Urain1 Jan Peters1;2 Abstract— Similarity distance measure between two trajecto- ries is an essential tool to understand patterns in motion, for example, in Human-Robot Interaction or Imitation Learning. The problem has been faced in many fields, from Signal Pro- cessing, Probabilistic Theory field, Topology field or Statistics field. Anyway, up to now, none of the trajectory similarity measurements metrics are invariant to all possible linear trans- formation of the trajectories (rotation, scaling, reflection, shear mapping or squeeze mapping). Also not all of them are robust in front of noisy signals or fast enough for real-time trajectory classification. To overcome this limitation this paper proposes a similarity distance metric that will remain invariant in front of any possible linear transformation. Based on Pearson’s Correlation Coefficient and the Coefficient of Determination, our similarity metric, the Generalized Multiple Correlation Fig. 1: GMCC applied for clustering taught trajectories in Coefficient (GMCC) is presented like the natural extension of Imitation Learning the Multiple Correlation Coefficient. The motivation of this paper is two-fold: First, to introduce a new correlation metric that presents the best properties to compute similarities between trajectories invariant to linear transformations and compare human-robot table tennis match. In [11], HMM were used it with some state of the art similarity distances. Second, to to recognize human gestures. The recognition was invariant present a natural way of integrating the similarity metric in an to the starting position of the gestures. The sequences of Imitation Learning scenario for clustering robot trajectories.
    [Show full text]
  • Direct Shear Mapping: Prospects for Weak Lensing Studies of Individual Galaxy–Galaxy Lensing Systems
    Publications of the Astronomical Society of Australia (PASA), Vol. 32, e040, 16 pages (2015). C Astronomical Society of Australia 2015; published by Cambridge University Press. doi:10.1017/pasa.2015.39 Direct Shear Mapping: Prospects for Weak Lensing Studies of Individual Galaxy–Galaxy Lensing Systems C. O. de Burgh-Day1,2,3,4, E. N. Taylor1,3,R.L.Webster1,3 and A. M. Hopkins2,3 1School of Physics, David Caro Building, The University of Melbourne, Parkville VIC 3010, Australia 2The Australian Astronomical Observatory, PO Box 915, North Ryde NSW 1670, Australia 3ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), School of Physics, David Caro Building, The University of Melbourne, Parkville VIC 3010, Australia 4Email: [email protected] (Received April 23, 2012; Accepted September 21, 2012) Abstract Using both a theoretical and an empirical approach, we have investigated the frequency of low redshift galaxy-galaxy lensing systems in which the signature of 3D weak lensing might be directly detectable. We find good agreement between these two approaches. Using data from the Galaxy and Mass Assembly redshift survey we estimate the frequency of detectable weak lensing at low redshift. We find that below a redshift of z ∼ 0.6, the probability of a galaxy being weakly γ ≥ . ∼ . − lensed by 0 02 is 0 01. We have also investigated the feasibility of measuring the scatter in the M∗ Mh relation using shear statistics. We estimate that for a shear measurement error of γ = 0.02 (consistent with the sensitivity of the Direct Shear Mapping technique), with a sample of ∼50,000 spatially and spectrally resolved galaxies, the scatter in the − M∗ Mh relation could be measured.
    [Show full text]
  • Matrix & Power Series Methods
    ii MATRIX AND POWER SERIES METHODS Mathematics 306 All You Ever Wanted to Know About Matrix Algebra and Infinite Series But Were Afraid To Ask By John W. Lee Department of Mathematics Oregon State University January 2006 Contents Introduction ix I Background and Review 1 1ComplexNumbers 3 1.1Goals................................. 3 1.2Overview............................... 3 1.3TheComplexNumberSystem.................... 4 1.4PropertiesofAbsoluteValuesandComplexConjugates..... 8 1.5TheComplexPlane......................... 8 1.6CirclesintheComplexPlane.................... 12 1.7ComplexFunctions.......................... 14 1.8SuggestedProblems......................... 15 2 Vectors, Lines, and Planes 19 2.1Goals................................. 19 2.2Overview............................... 19 2.3Vectors................................ 19 2.4DotProducts............................. 24 2.5RowandColumnVectors...................... 27 2.6LinesandPlanes........................... 28 2.7SuggestedProblems......................... 30 II Matrix Methods 33 3 Linear Equations 35 3.1Goals................................. 35 3.2Overview............................... 35 3.3ThreeBasicPrinciples........................ 36 3.4SystematicEliminationofUnknowns................ 40 3.5Non-SquareSystems......................... 45 3.6 EfficientEvaluationofDeterminants................ 47 iii iv CONTENTS 3.7ComplexLinearSystems....................... 48 3.8SuggestedProblems......................... 48 4 Matrices and Linear Systems 51 4.1Goals................................
    [Show full text]
  • Euclidean Plane and Its Relatives
    Euclidean Plane and its Relatives A minimalistic introduction Anton Petrunin arXiv:1302.1630v7 [math.HO] 25 Jan 2015 This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/. http://www.createspace.com/4122116 ISBN-13: 978-1481918473 ISBN-10: 1481918478 Contents Introduction 7 Prerequisite. Overview. 1 Preliminaries 11 What is axiomatic approach? What is model? Metric spaces. Examples. Shortcut for distance. Isometries, mo- tions and lines. Half-lines and segments. Angles. Reals modulo 2 π. Continuity. Congruent triangles. · Euclidean geometry 2 The Axioms 23 The Axioms. Lines and half-lines. Zero angle. Straight angle. Vertical angles. 3 Half-planes 29 Sign of angle. Intermediate value theorem. Same sign lem- mas. Half-planes. Triangle with the given sides. 4 Congruent triangles 37 Side-angle-side condition. Angle-side-angle condition. Isosceles triangles. Side-side-side condition. 5 Perpendicular lines 41 Right, acute and obtuse angles. Perpendicular bisector. Uniqueness of perpendicular. Reflection. Perpendicular is shortest. Angle bisectors. Circles. Geometric construc- tions. 3 4 CONTENTS 6 Parallel lines and similar triangles 51 Parallel lines. Similar triangles. Pythagorean theorem. Angles of triangle. Transversal property. Parallelograms. Method of coordinates. 7 Triangle geometry 61 Circumcircle and circumcenter. Altitudes and orthocenter. Medians and centroid. Bisector of triangle. Incenter. Inversive geometry 8 Inscribed angles 69 Angle between a tangent line and a chord. Inscribed angle. Inscribed quadrilaterals. Arcs. 9 Inversion 77 Cross-ratio. Inversive plane and circlines. Ptolemy’s iden- tity. Perpendicular circles. Angles after inversion. Non-Euclidean geometry 10 Absolute plane 89 Two angles of triangle.
    [Show full text]
  • Quantum Image Rotation by an Arbitrary Angle
    Noname manuscript No. (will be inserted by the editor) Quantum Image Rotation by an arbitrary angle Fei Yan · Kehan Chen · Salvador E. Venegas-Andraca · Jianping Zhao Received: date / Accepted: date Abstract In this paper, a novel method of quantum image rotation (QIR) based on shear transformations on NEQR quantum images is proposed. To compute the horizontal and vertical shear mappings required for rotation, we have designed quantum self-adder, quantum control multiplier, and quantum interpolation circuits as the basic computing units in the QIR implementation. Furthermore, we provide several examples of our results by presenting com- puter simulation experiments of QIR under 30◦, 45◦, and 60◦ rotation scenarios and have a discussion onto the anti-aliasing and computational complexity of the proposed QIR method. Keywords quantum information · quantum computation · quantum algorithms · quantum image · image rotation · shear mapping. 1 Introduction Cross-pollination between physics and computer science has long been abun- dant and fruitful. For example, statistical mechanics has inspired the develop- ment of probabilistic algorithms focused on solving optimization problems [1] Fei Yan. School of Computer Science and Technology, Changchun University of Science and Technol- ogy. No. 7089, Weixing Road, Changchun 130022, China. Kehan Chen. School of Computer Science and Technology, Changchun University of Science and Technol- ogy. No. 7089, Weixing Road, Changchun 130022, China. Salvador E. Venegas-Andraca. Tecnol´ogicode Monterrey, Escuela de Ingenier´ıay Ciencias and Campus Estado de M´exico. Carretera al Lago de Guadalupe KM. 3.5, Atizap´ande Zaragoza, Estado de M´exico CP 52926, M´exico.E-mail: [email protected] Jianping Zhao.
    [Show full text]