Prospects of Cold Ironing As an Emissions Reduction Option

Total Page:16

File Type:pdf, Size:1020Kb

Prospects of Cold Ironing As an Emissions Reduction Option Downloaded from orbit.dtu.dk on: Oct 07, 2021 Prospects of cold ironing as an emissions reduction option Zis, Thalis Published in: Transportation Research. Part A: Policy & Practice Link to article, DOI: 10.1016/j.tra.2018.11.003 Publication date: 2019 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Zis, T. (2019). Prospects of cold ironing as an emissions reduction option. Transportation Research. Part A: Policy & Practice, 119, 82-95. https://doi.org/10.1016/j.tra.2018.11.003 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Prospects of cold ironing as an emissions reduction option This is a pre-print of an article published in Transportation Research Part A: Policy and Practice The definitive publisher-authenticated version is available here: https://www.sciencedirect.com/science/article/pii/S0965856418303264 Zis, T. P. (2019). Prospects of cold ironing as an emissions reduction option. Transportation Research Part A: Policy and Practice, 119, 82-95. Prospects of cold ironing as an emissions reduction option Thalis Zis* Department of Management Engineering, Technical University of Denmark, Produktionstorvet, 2800 Kgs. Lyngby, Denmark, [email protected] Abstract Cold ironing is the process of providing shorepower to cover the energy demands of ships calling at ports. This technological solution can eliminate the emissions of auxiliary engines at berth, resulting in a global reduction of emissions if the grid powering the ships is an environmentally friendly energy source. This paper conducts a literature review of recent academic work in the field and presents the status of this technology worldwide and the current barriers for its further implementation. The use of cold ironing is mandatory in Californian ports for ship operators and as a result terminal and ship operators were required to invest in this technology. In Europe, all ports will be required to have cold ironing provision by the end of 2025. Other regulations that target local emissions such as Emission Control Areas can have a significant impact on whether cold ironing is used in the future as a potential compliance solution. This paper constructs a quantitative framework for the examination of the technology considering all stakeholders. The role of regulation is shown to be critical for the further adoption of this technology. Illustrative case studies are presented that consider the perspective of ship operators of various ship types, and terminal operators that opt to invest in shorepower facilities. The results of the case studies show that for medium and high fuel price scenarios there is economic motivation for ship operators to use cold ironing. For the port, the cost per abated ton of pollutants is much lower than current estimates of the external costs of pollutants. Therefore, shorepower may be a viable emissions reduction option for the maritime sector, provided that regulatory bodies assist the further adoption of the technology from ship operators and ports. The methodology can be useful to port and ship operators in examining the benefits of using cold ironing as an emissions reduction action. 1. Introduction Maritime shipping is considered the most fuel-efficient mode of transport in ton-miles terms, and moves about 90 % of the global trade (UNCTAD, 2017). The third GHG study (IMO, 2014) estimates that shipping accounts for approximately 2.2% of the global anthropogenic CO2 emissions, representing a 0.5% decrease from the second GHG study estimates (IMO, 2009). However, the sector has seen increasing pressure, through new regulations, to improve its environmental performance, particularly in light of its contribution to harmful pollutant emissions on human health. Maritime transport accounts for 5% to 8% of the global SOx emissions (Eyring et al., 2005), and approximately 15% for NOx (Corbett et al., 2007), while PM emissions from shipping near coastlines and ports have been linked to fatalities attributed to respiratory health issues. The IMO is regulating the maximum sulphur limits in fuel through the revised MARPOL Annex VI, which also designated sulphur emission control areas (SECA) where tighter limits apply. Current SECAs include the Baltic Sea, the North Sea, the North American emission control area (ECA) that extends 200NM from the US and Canadian coasts, and the US Caribbean ECA. The latter two ECAs have also set restrictions on PM and NOx emissions. The first results of the SECAs on emissions reduction show significant improvements. In relevant literature, there has been no recent update on the share of maritime transport in SOx emissions, and the latest reliable estimate is in the aforementioned study of Eyring et al., back in 2005. On a more recent publication, Zis and Psaraftis (2018) used data from the Organization for Co-operation and Development (OECD) on its member countries and estimated that SOx emissions from all transportation modes accounted for 3.5% in 2015. Considering that road transport accounted for 0.48%, the share of maritime transport in SOx emissions has been drastically reduced since 2005. In addition to the introduction of SECAs, as of January 2010 the European Union (EU) set a sulphur limit of 0.1% for ships at-berth in EU ports with stays longer than 2 hours, as well as when sailing on inland waterways (European Commission, 2005). The European Commission has promoted the further provision of shorepower to its member states via an official recommendation (European Commission, 2006). Port authorities around the world have launched initiatives that promote use of low-sulphur fuel in their proximity, with the port of Singapore being a notable example under the Green Ship and Green Port programmes offering monetary incentives for clean practices that reduce CO2 and SOx emissions. Finally, the ports of Los Angeles and of Long Beach have introduced voluntary speed reduction programmes (VSRP) in their proximity in return for a reduction of port fees, and are moving towards making the use of shorepower for ocean going ships compulsory. With regards to regulations targeting sulphur emissions, ship owners can comply by either switching to ultra-low sulphur fuels such as Marine Gas Oil (MGO) or investing in scrubber systems that treat the exhaust gases to remove SOx and PM emissions thus allowing the use of Heavy Fuel Oil (HFO). Similarly, to cope with regulations on emissions at ports a ship can either use cleaner fuel or be retrofitted to receive shorepower if the port has cold ironing facilities. Therefore, to address environmental regulation the shipowners have to pay to acquire abatement technology, or increase their operating costs by using cleaner but pricier fuel. Which option is more cost-effective for the shipowner depends on various factors, including ship type, ship size, regulations affecting the waters in which the ship sails, and ports of call. At the same time, the decision of a port to invest in technologies that allow the provision of shorepower depends on several factors spanning from emissions reduction policies, and the penetration rate of the technology in the calling ships. This paper discusses the feasibility of cold ironing (CI) investments from the perspective of shipowners, terminal operators, and regulatory bodies when considering the scope of environmental improvement that this technological solution can provide. The first section of this paper presents a concise literature review of relevant research in port emissions and use of CI. The subsequent section presents the methodology used for the assessment of an investment in such systems from all stakeholders, and expands on previous models to estimate the new environmental balance following the installation of a CI berth at a port. The third section considers the perspective of ship operators that retrofit ships of different types and the net present value (NPV) of their investments. A similar analysis is conducted from the perspective of a terminal operator that can choose to invest in a shorepower facility, and then decide the pricing strategy for the provision of electricity to the ships. The paper concludes with a discussion on the importance of the regulations on such technologies, the attained cost of reducing a ton of pollutant compared to other technologies, and the potential implications of internalizing external costs attributed to ship activity at ports. 2. Literature review The majority of academic research on the environmental impacts of shipping has focused on the overall contribution of the sector, and on ways to mitigate emissions predominantly via slow steaming. However, effects near ports have not been extensively researched, with the majority of studies being technical reports of port authorities focusing on a very broad level of environmental concerns. 2.1 Environmental impacts of shipping near ports Davarzani et al. (2016) conduct a literature review on greening ports and identify research areas for further investigation. They note that the focus on emissions from ships and port equipment is relatively new with a significant increase in publication numbers during the last decade. Slow steaming has been examined and shown to be a cost effective measure that simultaneously reduces carbon emissions (Golias et al., 2010). The reduction of sailing speed in the full journey also results in a small reduction of emissions in the proximity of the port (Zis et al., 2015).
Recommended publications
  • Cold Ironing Report
    PRELIMINARY DRAFT—DO NOT CITE OR QUOTE I. INTRODUCTION This report presents an analysis of the feasibility and cost effectiveness of cold-ironing ocean-going vessels while docked at California ports. Cold-ironing refers to shutting down auxiliary engines on ships while in port and connecting to electrical power supplied at the dock, thus eliminating virtually all emissions from a ship while it is in port. (Cold-ironing is also referred to as “shore power” and alternative maritime power). The term “cold-ironing” comes from the act of dry-docking a vessel, which involves shutting down all on-board combustion, resulting in the vessel going “cold.” Without cold-ironing, auxiliary engines run continuously while a ship is docked, or “hotelled,” at a berth to power lighting, ventilation, pumps, communication, and other onboard equipment. Ships can hotel for several hours or several days. Hotelling emissions from ship auxiliary engines are significant contributors to particulate matter from diesel-fueled engines (diesel PM), California’s most significant toxic air contaminant. Diesel PM emissions are estimated to be responsible for about 70 percent of the total ambient air toxics risk in California. Communities adjacent to the ports are exposed to elevated cancer risk and other health impacts from these hotelling emissions. As indicated in a recent Air Resources Board (ARB or Board) risk analysis conducted for the ports of Los Angeles and Long Beach, “Diesel Particulate Matter Exposure Assessment Study for the Ports of Los Angeles and Long Beach,” 20 percent of total diesel PM emissions at these ports comes from hotelling emissions. Other sources of diesel PM include emissions from ship transit and maneuvering, cargo-handling equipment, and rail and truck operations.
    [Show full text]
  • Costs and Benefits of Shore Power at the Port of Shenzhen
    WHITE PAPER DECEMBER 2015 COSTS AND BENEFITS OF SHORE POWER AT THE PORT OF SHENZHEN Haifeng Wang, Ph.D., Xiaoli Mao, and Dan Rutherford, Ph.D. www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGEMENTS This report was commissioned by the China Environment Forum (CEF) at the Woodrow Wilson International Center for Scholars as part of its Choke Point: Port Cities initiative, funded by the Henry Luce Foundation. The authors thank Irene Kwan and Simon Ng for their technical support and Tim Leong for his critical review of the work. The authors also especially thank Shenzhen Human Settlements and Environmental Committee and the Port of Oakland for their review and recommendations for the report. ABOUT THE CHINA ENVIRONMENT FORUM (CEF) Since 1997, the China Environment Forum (CEF) has been the “go-to” resource for convening policy, business, research, and NGO practitioners on the most pressing energy, water, and pollution problems facing China. Through meetings, publications, and exchanges, they play a unique nonpartisan role in creating multistakeholder dialogues around China’s energy and environmental challenges, identifying new areas of collaboration. CEF’s work is frequently featured in mainstream media, including: The New York Times, The Wall Street Journal, The Washington Post, BBC News, The Guardian, Bloomberg Businessweek, and Foreign Policy. For additional information: International Council on Clean Transportation 1225 I Street NW Suite 900 Washington, DC 20005 USA [email protected]
    [Show full text]
  • Analysis of the Cost-Effectiveness of Cold Ironing at Mombasa Port
    World Maritime University The Maritime Commons: Digital Repository of the World Maritime University World Maritime University Dissertations Dissertations 11-4-2018 Ship-port interface: analysis of the cost-effectiveness of cold ironing at Mombasa Port Ronald Ssali Follow this and additional works at: https://commons.wmu.se/all_dissertations Part of the Energy Systems Commons, and the Transportation Commons Recommended Citation Ssali, Ronald, "Ship-port interface: analysis of the cost-effectiveness of cold ironing at Mombasa Port" (2018). World Maritime University Dissertations. 656. https://commons.wmu.se/all_dissertations/656 This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact [email protected]. WORLD MARITIME UNIVERSITY Malmö, Sweden SHIP-PORT INTERFACE: ANALYSIS OF THE COST-EFFECTIVENESS OF COLD IRONING AT MOMBASA PORT By RONALD SSALI Uganda. A Dissertation Submitted to World Maritime University in Partial Fulfilment of the Requirements for the Award of the Degree Of MASTER OF SCIENCE In MARITIME AFFAIRS, (MARITIME ENERGY MANAGEMENT) 2018 Copyright Ronald Ssali, 2018. DECLARATION I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred on me. The contents of this dissertation reflect my own personal views, and are not necessarily endorsed by the University. Signature: …………… ………… Date: 18th Sep 2018 Supervised by: Dr. Fabio Ballini (Ph.D.) Supervisor’s affiliation: Lecturer - Maritime Economist Maritime Energy Management Specialization Maritime Energy Research Group (MarEner) WORLD MARITIME UNIVERSITY ii ACKNOWLEDGEMENT I express my utmost appreciation to my supervisor, Dr.
    [Show full text]
  • A Cold Ironing Study on Modern Ports, Implementation and Benefits Thriving for Worldwide Ports
    A Cold Ironing Study on Modern Ports, Implementation and Benefits Thriving for Worldwide Ports PAPOUTSOGLOU G. THEODOROS School of Naval Architecture & Marine Engineering National Technical University of Athens 2012 School of Naval Architecture & Marine Engineering National Technical University of Athens 2012 Thesis PAPOUTSOGLOU G. THEODOROS A Cold Ironing Study on Modern Ports, Implementation and Benefits Thriving for Worldwide Ports Supervisor: HARILAOS N. PSARAFTIS Professor of Maritime Transport National Technical University of Athens Subject: Study of Cold ironing benefits applied on modern ports Key Words: Cold ironing, Alternative Marine Power, AMP, Onshore Power Supply, OPS, Shore side electricity, EEDI, SEEMP, IAPH toolbox, WPCI, NTUA, NAME NTUA [2] THEODOROS G. PAPOUTSOGLOU Acknowledgements For the help, encouragement and contribution during my thesis thanks to my Supervisor and Professor Harilaos N. Psaraftis. Also I express my thanks to all my friends and family supporting me during work. [3] A Cold Ironing Study on Modern Ports, Implementation and Benefits Thriving for Worldwide Ports ABSTRACT Cold ironing lately is receiving much attention and being promoted as a prime strategy for reducing air emission generated from global maritime industry. This study focuses on the key role of cold ironing ƚŽǁĂƌĚƐĂ͞'ƌĞĞŶĞƌŽŵŵĞƌĐŝĂůDĂƌŝƚŝŵĞŽŵŵƵŶŝƚLJ͘͟ Although many different strategies are applied in modern worldwide ports, the concept of shore powering the ships while at berth is attracting much attention, with significant both financial and scientific sources being directed towards the adaptation / implementation of cold ironing technology. This report presents an in-depth analysis of cold ironing application in modern ports and the benefits in an environmental and financial point of view.
    [Show full text]
  • Evaluation of the Emission Impact of Cold-Ironing Power Systems, Using a Bi-Directional Power Flow Control Strategy
    sustainability Article Evaluation of the Emission Impact of Cold-Ironing Power Systems, Using a Bi-Directional Power Flow Control Strategy Carlos A. Reusser 1,†,∗ and Joel R. Pérez 2,† 1 School of Electrical Engineering, Pontificia Universidad Catolica de Valparaiso, Valparaíso 2950, Chile 2 Mechanical Engineering Department, University College London, London WC1E 6BT, UK; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Even though cold ironing is not a new technology applied to reduce the impact of emissions from ships at berth, commonly used arrangements for shore-side power substations only allow a unidirectional power flow, from port to ship side. Although these applications have a positive contribution to port community health and global reduction of greenhouse gases (GHG), especially when the energy is supplied from renewable sources, emissions during loading/unloading operations are directly related to the operating profiles of auxiliary engines of a ship. The present work evaluates a ship’s emission impact when applying cold-ironing technology using a bi-directional power flow control strategy while at berth, thus optimizing the auxiliary engine operating profile and enabling regeneration into the port installations. The methodology applied considers the establishment of the operational profile of the ship, the adaptation and use of carbon intensity indicators (CII) used by the International Maritime Organization (IMO) to evaluate the impact of shipping, and the strategy considering the capacities of the ship to obtain and provide electric power from and to the port when at berth. Results show that the strategy can be applied to any ship with a high demand for electric power while at berth, and that the adaptation and use of different CIIs allows operational profiles of electric power generation on board to be optimized and to reduce emission generation, which affects port community health.
    [Show full text]
  • 2006-03-06 Draft Cold-Ironing Report Main Report
    PRELIMINARY DRAFT—DO NOT CITE OR QUOTE I. INTRODUCTION This report presents an analysis of the feasibility and cost effectiveness of cold-ironing ocean-going vessels while docked at California ports. Cold-ironing refers to shutting down auxiliary engines on ships while in port and connecting to electrical power supplied at the dock, thus eliminating virtually all emissions from a ship while it is in port. (Cold-ironing is also referred to as “shore power” and alternative maritime power). The term “cold-ironing” comes from the act of dry-docking a vessel, which involves shutting down all on-board combustion, resulting in the vessel going “cold.” Without cold-ironing, auxiliary engines run continuously while a ship is docked, or “hotelled,” at a berth to power lighting, ventilation, pumps, communication, and other onboard equipment. Ships can hotel for several hours or several days. Hotelling emissions from ship auxiliary engines are significant contributors to particulate matter from diesel-fueled engines (diesel PM), California’s most significant toxic air contaminant. Diesel PM emissions are estimated to be responsible for about 70 percent of the total ambient air toxics risk in California. Communities adjacent to the ports are exposed to elevated cancer risk and other health impacts from these hotelling emissions. As indicated in a recent Air Resources Board (ARB or Board) risk analysis conducted for the ports of Los Angeles and Long Beach, “Diesel Particulate Matter Exposure Assessment Study for the Ports of Los Angeles and Long Beach,” 20 percent of total diesel PM emissions at these ports comes from hotelling emissions. Other sources of diesel PM include emissions from ship transit and maneuvering, cargo-handling equipment, and rail and truck operations.
    [Show full text]
  • Environmental Management Framework Strategic Implementation Plans
    Environmental Management Framework Strategic Implementation Plans Sustainability Community Engagement Marine Resources Soil/Sediment Water Quality Air Quality Prepared by: D R A F T R E P O R T ENVIRONMENTAL MANAGEMENT FRAMEWORK STRATEGIC IMPLEMENTATION PLANS Prepared for: April 22, 2013 E2 Project Number: 12‐144‐002 5000 E. Spring Street, Suite 720 Long Beach, California 90815 P: (562) 740‐1060 www.E2ManageTech.com TABLE OF CONTENTS TABLE OF CONTENTS EXECUTIVE SUMMARY ........................................................................................................... 1 SECTION 1 INTRODUCTION ............................................................................................... 1 1.1 Background ............................................................................................................................ 1 1.2 Overview ................................................................................................................................. 2 1.3 Timeframe and Evaluation ..................................................................................................... 2 1.4 Purpose/Intended Use ............................................................................................................ 2 SECTION 2 COMMUNITY ENGAGEMENT ........................................................................... 3 2.1 Community Engagement at the Port ...................................................................................... 3 2.2 Community Engagement Strategies ......................................................................................
    [Show full text]
  • (Cold Ironing) and Its Impact on Port Management and Operations. Richard Fiadomor World Maritime University
    World Maritime University The Maritime Commons: Digital Repository of the World Maritime University World Maritime University Dissertations Dissertations 2009 Assessment of alternative maritime power (cold ironing) and its impact on port management and operations. Richard Fiadomor World Maritime University Follow this and additional works at: http://commons.wmu.se/all_dissertations Part of the Energy Systems Commons Recommended Citation Fiadomor, Richard, "Assessment of alternative maritime power (cold ironing) and its impact on port management and operations." (2009). World Maritime University Dissertations. 277. http://commons.wmu.se/all_dissertations/277 This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact [email protected]. WORLD MARITIME UNIVERSITY Malmö, Sweden ASSESSMENT OF ALTERNATIVE MARITIME POWER (COLD IRONING) AND ITS IMPACT ON PORT MANAGEMENT AND OPERATIONS. By Richard Fiadomor Ghana A dissertation submitted to the World Maritime University in partial fulfilment of the requirement for the award of degree of MASTER OF SCIENCE In MARITIME AFFAIRS (PORT MANAGEMENT) 2009 © Copyright Richard Fiadomor, 2009 DECLARATION I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred on me. The contents of this dissertation reflect my own personal views, and are not necessarily endorsed by the University. (Signature): …………………………… (Date): …………………………… Supervised by: Jan Horck Asst. Professor World Maritime University Assessor: Daniel S.H Moon Professor World Maritime University Co-Assessor Mr.
    [Show full text]
  • Port of Hueneme
    Electric Vehicle Accelerator Plan for the Port of Hueneme July 5, 2019 Prepared by Ventura County Regional Energy Alliance, Community Environmental Council, and EV Alliance Funded by the EV Ready Communities Challenge Grant from the California Energy Commission Contents Introduction .................................................................................................................................................. 1 Port of Hueneme ........................................................................................................................................... 2 2014 Shoreside Power Investment .................................................................................................... 2 Zero- and Near Zero-Emission Freight Facilities Project ........................................................................... 3 Other Sustainability Efforts ....................................................................................................................... 3 Drayage and truck traffic .............................................................................................................................. 4 Impact of Drayage and Truck Traffic South of 101 ................................................................................... 8 Financial benefits of drayage electrification ............................................................................................. 9 Tesla ...................................................................................................................................................
    [Show full text]
  • Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility
    SANDIA REPORT SAND2013-0501 Unlimited Release Printed February 2013 Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Joseph W. Pratt and Aaron P. Harris Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America.
    [Show full text]
  • Shore Power Technology Assessment at US Ports
    Shore Power Technology Assessment at U.S. Ports Office of Transportation and Air Quality EPA-420-R-17-004 March 2017 Shore Power Technology Assessment at U.S. Ports Transportation and Climate Division Office of Transportation and Air Quality U.S. Environmental Protection Agency Prepared for EPA by Eastern Research Group, Inc. and Energy & Environmental Research Associates, LLC EPA Contract No. EP-C-11-046 Work Assignment No. 4-06 NOTICE This technical report does not necessarily represent final EPA decisions or positions. It is intended to present technical analysis of issues using data that are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments. EPA-420-R-17-004 March 2017 SHORE POWER TECHNOLOGY ASSESSMENT AT U.S. PORTS – OVERVIEW Ports are major centers for movement of goods and passengers from vessels in the United States (U.S.) and are vital to America’s business competitiveness, jobs, and economic prosperity. Goods and passengers moving through ports are projected to grow as are the size of ships due to the opening of the new Panama Canal locks in 2016 and other factors. Some vessel types, such as cruise, container, and refrigeration, can require significant power while at berth. This power is typically generated by diesel auxiliary engines. Emissions from vessels running auxiliary diesel engines at berth can be significant contributors to air pollution. As port traffic grows in certain areas, air pollution may also
    [Show full text]
  • January 10, 2020 SUMMARY of SUBJECT MATTER
    Peter A. DeFazio Sam Graves Chairman Ranking Member Katherine W. Dedrick Paul J. Sass Staff Director Republican Staff Director January 10, 2020 SUMMARY OF SUBJECT MATTER TO: Members, Subcommittee on Coast Guard and Maritime Transportation FROM: Staff, Subcommittee on Coast Guard and Maritime Transportation RE: Hearing on “The Path to a Carbon-Free Maritime Industry: Investments and Innovation” PURPOSE The Subcommittee on Coast Guard and Maritime Transportation will meet on Tuesday, January 14, 2020, at 10:00 a.m. in 2167 Rayburn House Office Building to survey new developments in sustainable shipping technologies and international emissions standards established to decarbonize the maritime industry. The Subcommittee will hear from Maersk Line, the Washington State Department of Commerce, ABB Marine and Ports, Chamber of Shipping of America, and the World Shipping Council about innovations in zero-emission vessel (ZEV) design, research and infrastructure needs, and strategic opportunities for American maritime commerce. BACKGROUND Emissions and the Maritime Industry The International Maritime Organization (IMO) has set the stage for a massive decarbonization of the shipping industry. On its own, today’s international shipping industry accounts for over 1 billion tons of emissions per year, 3% of total global of sulfur oxides (SOx), nitrogen oxide (NOx), particulate 1 matter (PM), and carbon dioxide (CO2) emissions. If international shipping were a country, it would rank as the 6th largest polluting actor on the planet; shipping emissions contributed to 1,200 early 1 Olmer et al., Greenhouse Gas Emissions from Global Shipping, 2013–2015, The International Council On Clean Transportation, 2017; Heitmann N, Khalilian S, Accounting for carbon dioxide emissions from international shipping.
    [Show full text]