Parenteral Nutrition Management for Adult Patients

Total Page:16

File Type:pdf, Size:1020Kb

Parenteral Nutrition Management for Adult Patients NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #40 Carol Rees Parrish, R.D., M.S., Series Editor The Hitchhiker’s Guide to Parenteral Nutrition Management for Adult Patients Howard Madsen Eric H. Frankel While parenteral nutrition is a life-saving modality for people with intestinal failure, it is not without significant risk. In the hospital setting, under certain clinical circum- stances, patients will also benefit from the use of parenteral nutrition. The purpose of this article is to aid the clinician in the safe provision of parenteral nutrition support, including development of the prescription, appropriate monitoring, and awareness of the issues involved in the preparation and stability of commonly used additives. Frequently asked questions and challenges that arise with the use of parenteral nutri- tion are also addressed. INTRODUCTION cians ordering parenteral nutrition. eeding nutritionally compromised patients has never been as easy, or as hard, as it is today. We INDICATIONS Fare able to provide nutrients parenterally and enterally to patients who once would have been con- The guiding principle of nutrition support is to use the sidered “unfeedable.” Today’s inpatient population is least invasive and most physiologic method of feeding. sicker than patients in the past; the same may be said Infusing chemicals directly into the bloodstream is the for patients needing specialized nutrition support. This least preferred method of providing nutrition support results in challenges to clinicians caring for these (1). Yet, for a select subset of the population, intra- patients. Our goal in writing this article is to provide a venous infusion of central parenteral nutrition (PN) or succinct and easy to follow guide for practicing clini- peripheral parenteral nutrition (PPN) is the only viable means to provide substrates for metabolism. PN carries Howard Madsen, RD, Pharm.D., Nutrition Support with it inherent risks associated with the placement of a Pharmacy Practice Resident and Eric H. Frankel, central venous catheter. Due to the increased risk of MSE, Pharm.D., BCNSP, Nutrition Support Coordina- complications with PN therapy, including thrombosis tor, Covenant Health System, Lubbock, Texas. and infection, a careful assessment of PN appropriate- 46 PRACTICAL GASTROENTEROLOGY • JULY 2006 The Hitchhiker’s Guide to Parenteral Nutrition Management NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #40 Table 1 Table 2 Indications, Relative Indications and Contraindications Important Factors to Consider when Assessing a Patient for Parenteral Nutrition for Parenteral Nutrition Parenteral nutrition is usually indicated in the • Anthropometric Data – include: following situations – Recent weight changes • Documented inability to absorb adequate nutrients via the – Current height and weight GI tract such as: • Lab values – including: – Massive small-bowel resection/short bowel syndrome – Comprehensive metabolic panel (at least initially) – Serum magnesium level – Radiation enteritis – Serum phosphorus level – Severe diarrhea – Serum triglycerides as indicated (Table 18) – Untreatable steatorrhea/malabsorption (i.e., not pancre- • Medical/Surgical History atic insufficiency, small bowel bacterial overgrowth, or – Anatomy (resections)/ostomies celiac disease) – Pre-existing conditions such as diabetes, renal failure, • Complete bowel obstruction, or intestinal pseudo-obstruction liver disease, etc. • Severe catabolism with or without malnutrition when GI tract • Diet/Medication History – include: is not usable within 5–7 days – Food/drug allergies • Inability to obtain enteral access – Diet intake prior to admission • Inability to provide sufficient nutrients/fluids enterally – Special diets • Pancreatitis accompanied by abdominal pain with jejunal – Herbal/supplement use delivery of nutrients – Home and current medications • Persistent GI hemorrhage • Acute abdomen/ileus • Lengthy GI work-up requiring NPO status for several days in ness should precede placement of a central venous a malnourished patient catheter (1,2). Table 1 lists indications and contraindi- • High output enterocutaneous fistula (>500 mL) and inability cations for PN. to gain enteral access distal to the fistula site • Trauma requiring repeat surgical procedures Parenteral nutrition may be indicated in the following situations PATIENT ASSESSMENT • Enterocutaneous fistula Prior to initiating PN, a nutrition assessment is neces- • Inflammatory bowel disease not responding to medical therapy • Hyperemesis gravidarum when nausea and vomiting persist sary to determine nutrient needs and to anticipate any longer than 5–7 days and enteral nutrition is not possible metabolic changes that may occur due to the patient’s • Partial small bowel obstruction underlying condition, medications or concurrent thera- • Intensive chemotherapy/severe mucositis pies, etc. Table 2 provides a list of factors to consider • Major surgery/stress when enteral nutrition not expected to when assessing a patient’s nutritional status. Deter- resume within 7–10 days • Intractable vomiting when jejunal feeding is not possible mining energy and protein needs in the severely mal- • Chylous ascites or chylothorax when low fat/fat free EN does nourished patient under physical stress, often ventila- not adequately decrease output tor-dependent with little mobility, can be difficult. Critical illness brings further challenges in determin- Contraindications for Parenteral Nutrition • Functioning gastrointestinal tract ing the appropriate calorie level, as matching caloric • Treatment anticipated for less than 5 days in patients without expenditure to caloric provision may be detrimental— severe malnutrition providing lower calorie levels initially has been advo- • Inability to obtain venous access cated (3,4). Calorie requirements often increase in • A prognosis that does not warrant aggressive nutrition support relation to stress, fever, and seizures, while a decrease • When the risks of PN are judged to exceed the potential benefits in needs may be seen in the setting of sedation or Used with permission from the University of Virginia Health System reduced mobility. While indirect calorimetry is consid- Nutrition Support Traineeship Syllabus (Parrish CR, Krenitsky J, ered the “gold standard” to determine caloric expendi- McCray S). Parenteral Module. University of Virginia Health System Nutrition Support Traineeship Syllabus, 2003. ture, formulas and calculations are frequently used. Unfortunately, no studies to date have demonstrated PRACTICAL GASTROENTEROLOGY • JULY 2006 47 The Hitchhiker’s Guide to Parenteral Nutrition Management NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #40 Table 3 Daily Energy and Substrate Guidelines for Adult PN (5–8) Nutrient Acute Care Critical Care Energy 25–30 total kcals/kg/d 25 total kcals/kg/d • Refeeding 15–25 kcal/kg/d 15–25 kcal/kg/d • Obesity (≥130% IBW) 15–20 kcal/kg/d adjusted weight * 15–20 kcal/kg/d adjusted weight * Protein 0.8–1.0 g/kg/d maintenance 1.5–2.2 g/kg/d 1.2–2.0 g/kg/d catabolism Dextrose <7 g/kg/d <5 g/kg/d Lipid** <2.5 g/kg/d 0.4–0.75 g/kg/d *Adjusted weight based on a 50% correction factor ([usual weight – ideal body weight] × 0.50) **If a patient is to be on PN for greater than 3 weeks, a minimum of 2%–4% of total calories should come from IV fat emulsion (IVFE) including linoleic acid to prevent essential fatty acid deficiency (EFAD) (9) benefit by comparing the use of metabolic cart results mal renal, cardiac, hepatic, and pulmonary function. with various formulas in terms of clinical outcomes. Due to the risk of thrombophlebitis, these solutions are Regardless of which calculation is used to estimate generally limited to an osmolarity of <600–900 nutrient requirements, it is important to note that there is mOsm/L (12,14). See Table 5 and Table 6 for calcula- a lack of evidence correlating a given calorie and pro- tion of mOsm in parenteral solutions. Even at 600–900 tein level to clinical outcomes, and the controversy over mOsm, these solutions are hypertonic, hence any which formula is “best” is ongoing. Guidelines for patient with poor peripheral access should not receive designing PN formulations have been developed by var- PPN. Instead, alternatives should be considered, based ious organizations and experts in the field of specialized on the individual patient’s circumstances. These nutrition support, some of which are listed on Table 3. include the use of Central PN or provision of peripheral protein-sparing IV fluids containing 5% dextrose. The anticipated duration of parenteral support and how VENOUS ACCESS soon the patient may be transitioned to enteral nutrition Line type, nutrition formulation and other medication will factor into this decision. Patients with rapid or fre- needs are inter-related and need to be approached in a quent loss of peripheral access with IV fluids (D5, etc.) unified manner. Table 4 describes the advantages and are poor candidates for PPN. As a rule of thumb, if the disadvantages of intravenous access typically used for patient’s peripheral access has been changed 2–3 times parenteral nutrition support. Nutritional limitations within the first 48 hours following admission on stan- associated with those lines are also provided. Further dard IV fluids, PPN should not be attempted. Combi- details on these topics have been included in the follow- nations of heparin and hydrocortisone added to the PPN ing paragraphs. formulation, with or without the use of a nitroglycerin patch placed proximal, and as close as
Recommended publications
  • 204508S000lbl.Pdf
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use ____________________CONTRAINDICATIONS____________________ CLINOLIPID injection safely and effectively. See full prescribing • Known hypersensitivity to egg and soybean proteins, the lipid emulsion information for CLINOLIPID injection. and/or excipients. (4) • Severe hyperlipidemia or severe disorders of lipid metabolism. (4) CLINOLIPID (Lipid Injectable Emulsion) for intravenous use Initial U.S. Approval: 1975 ________________WARNINGS AND PRECAUTIONS_______________ • Preterm infants have poor clearance of intravenous lipid emulsion. (5.1) WARNING: DEATH IN PRETERM INFANTS • Monitor for signs or symptoms of hypersensitivity reactions. (5.2) See full prescribing information for complete boxed warning • Monitor for signs and symptoms of infection, fat overload, and refeeding • Deaths in preterm infants have been reported in literature. (5.1, complications. (5.3, 5.4, 5.5) 8.4) • Frequent clinical and laboratory determinations are necessary. (5.6) • Autopsy findings included intravascular fat accumulation in the lungs. (5.1, 8.4) __________________ADVERSE REACTIONS__________________ • Preterm and low birth weight infants have poor clearance of The most common (5%) adverse drug reactions from clinical trials were intravenous lipid emulsion and increased free fatty acid plasma nausea and vomiting, hyperlipidemia, hyperglycemia, hypoproteinemia and levels following lipid emulsion infusion. (5.1, 8.4) abnormal liver function tests. (6.1) __________________INDICATIONS AND USAGE___________________ To report SUSPECTED ADVERSE REACTIONS, contact Baxter CLINOLIPID injection is a lipid emulsion indicated in adults for parenteral Healthcare at 1-866-888-2472 or FDA at 1-800-FDA-1088 or nutrition providing a source of calories and essential fatty acids when oral or www.fda.gov/medwatch enteral nutrition is not possible, insufficient, or contraindicated.
    [Show full text]
  • PROTOCOL: Compassionate Use of Omegaven® IV Fat Emulsion
    PROTOCOL: Compassionate Use of Omegaven® IV Fat Emulsion Background In the United States, patients dependent upon parenteral nutrition (PN) receive parenteral fat emulsions composed of soybean oils. Lipids are necessary in PN dependent patients due to their high caloric value and essential fatty acid content. However, intravenous lipid emulsions have been implicated in predisposing patients to PN associated liver disease. Phytosterols such as those contained in soybean oils are thought to have a deleterious effect on biliary secretion. Accumulation of lipids in the hepatic Kupffer cells may further impair liver function. Although the currently available omega-6 fatty acid emulsions prevent fatty acid deficiency, it is thought that they are not cleared in a manner similar to enteral chylomicrons and therefore accumulate in the liver and resulting in steatotic liver injury (neonatal cholestasis). It is hypothesized that a fat emulsion comprised of omega-3 fatty acids (i.e., fish oil), such as Omegaven,® would be beneficial in the management of steatotic liver injuiry by its inhibition of de novo lipogenesis, the reduction of arachidonic acid-derived inflammatory mediators, prevention of essential fatty acid deficiency through the presence of small amounts of arachidonic acid, and improved clearance of lipids from the serum. Animal studies have shown that IV fat emulsions such as fish oil that are high in eicosapentaenic and docosahexaenoic acid reduce impairment of bile flow which is seen in cholestasis caused by conventional fat emulsions. Furthermore, intravenous omega-3 fatty acids are well tolerated and might reduce the inflammatory effect in the liver of prolonged PN exposure and, potentially, reverse steatotic hepatic dysfunction.
    [Show full text]
  • Antimicrobial Stewardship Guidance
    Antimicrobial Stewardship Guidance Federal Bureau of Prisons Clinical Practice Guidelines March 2013 Clinical guidelines are made available to the public for informational purposes only. The Federal Bureau of Prisons (BOP) does not warrant these guidelines for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. Consult the BOP Clinical Practice Guidelines Web page to determine the date of the most recent update to this document: http://www.bop.gov/news/medresources.jsp Federal Bureau of Prisons Antimicrobial Stewardship Guidance Clinical Practice Guidelines March 2013 Table of Contents 1. Purpose ............................................................................................................................................. 3 2. Introduction ...................................................................................................................................... 3 3. Antimicrobial Stewardship in the BOP............................................................................................ 4 4. General Guidance for Diagnosis and Identifying Infection ............................................................. 5 Diagnosis of Specific Infections ........................................................................................................ 6 Upper Respiratory Infections (not otherwise specified) ..............................................................................
    [Show full text]
  • Liposomes to Augment Dialysis in Preclinical Models: a Structured Review
    pharmaceutics Review Liposomes to Augment Dialysis in Preclinical Models: A Structured Review Kevin Hart 1,*, Martyn Harvey 2, Mingtan Tang 3 , Zimei Wu 3 and Grant Cave 1 1 Intensive Care Unit, Hawkes Bay District Health Board, Hastings 9014, New Zealand; [email protected] 2 Waikato Hospital Emergency Department, Waikato District Health Board, Hamilton 3240, New Zealand; [email protected] 3 Faculty of Medicine and Health Sciences, School of Pharmacy, University of Auckland, Auckland 1023, New Zealand; [email protected] (M.T.); [email protected] (Z.W.) * Correspondence: [email protected] Abstract: In recent years, a number of groups have been investigating the use of “empty” liposomes with no drug loaded as scavengers both for exogenous intoxicants and endogenous toxic molecules. Preclinical trials have demonstrated that repurposing liposomes to sequester such compounds may prove clinically useful. The use of such “empty” liposomes in the dialysate during dialysis avoids recognition by complement surveillance, allowing high doses of liposomes to be used. The “reach” of dialysis may also be increased to molecules that are not traditionally dialysable. We aim to review the current literature in this area with the aims of increasing awareness and informing further research. A structured literature search identified thirteen papers which met the inclusion criteria. Augmenting the extraction of ammonia in hepatic failure with pH-gradient liposomes with acidic centres in peritoneal dialysis is the most studied area, with work progressing toward phase one trials. Liposomes used to augment the removal of exogenous intoxicants and protein- Citation: Hart, K.; Harvey, M.; Tang, bound uraemic and hepatic toxins that accumulate in these organ failures and liposome-supported M.; Wu, Z.; Cave, G.
    [Show full text]
  • 6 Literaturverzeichnis
    6 Literaturverzeichnis 6 Literaturverzeichnis Adam, A., Lederer, E., Muramyl peptides: Immunomodulators, sleep factors and vitamins. Med. Res. Rev. 4, 111-153, 1984. Akao, T., Correlation between physicochemical characteristics of synthetic cationic am- phiphiles and their DNA transfection ability. Bull. Chem. Soc. Jpn. 64, 3677-3681, 1991. Allison, A.C., Byars, N.E., Immunological adjuvants: desirable properties and side-effects. Mol. Immunol. 28, 279-284, 1991. Alving, C.R., Verma, J.N., Rao, U., Krzych, U., Amselem, S. Green, S.M., Wassef, N.M., Liposomes containing lipid A as potent non-toxic adjuvant. Res. Immunol. 143, 197-198, 1992. Alving, C.R., Lipopolysaccharide, lipid A and liposomes containing lipid A as immuno- logic adjuvants. Immunobiology 187, 430-446, 1993. Anderson, W.F., Human gene therapy. Nature 392, 25-30, 1998. Aprile, M.A., Wardlaw, A.C.,Aluminum compounds as adjuvants for vaccines and toxoids in man: a review. Can. J. Publ. Hlth 57, 343-354, 1966. Avrameas, S., Guilbert, B., Dosage enzymoimmunologique de protéine à l'aide d'immu- noadsorbants et d'antigènes marqués aux enzymes. C. R. Acad. Sci.(Paris) 273, 2705-2707, 1971. Bally, M.B., Harvie, P., Wong, F.M.P., Kong, S., Wasan, E.K., Reimer, D.L., Biological barriers to cellular delivery of lipid-based DNA carriers. Adv. Drug Deliv. Rev. 38, 291- 315, 1999. Behr, J.P., Gene transfer with synthetic cationic amphiphiles: Prospects for Gene Therapy. Bioconj. Chem. 5, 382-389, 1994. Binnig, G., Quate, C.F., Gerber, C., Atomic force microscopy. Phys. Rev. Lett. 56, 930- 933, 1986. Biocompare.com, Auflistung kommerzieller liposomaler Transfektiosagenzien unter http://biocompare.com Birchall, J.C., Kellaway, I.W., Mills, S.N., Physico-chemical characterisation and trans- fection efficiency of lipid-based gene delivery complexes.
    [Show full text]
  • General a Number of Factors Could Reduce the Efficacy of This
    AUSTRALIAN PRODUCT INFORMATION Administration It is strongly recommended that every time that GAMUNEX® is administered to a patient, the name Use in the elderly GAMUNEX® If dilution is required, GAMUNEX® may be diluted with 5% dextrose in water (D5/W). Do not and batch number of the product are recorded using the supplied tear off labels in order to maintain See Section 4.4 Special warnings and precautions for use: Use in renal impairment. a link between the patient and the batch of the product. (NORMAL IMMUNOGLOBULIN (HUMAN), 10%, INTRAVENOUS SOLUTION VIAL) dilute with saline. Paediatric use Anaphylaxis GAMUNEX® should be inspected visually for particulate matter and discoloration prior to adminis - No data available. GAMUNEX® should be administered only intravenously or subcutaneously. On rare occasions, tration, whenever solution and container permit. Do not use if turbid and/or if discoloration is Effects on laboratory tests 1 NAME OF THE MEDICINE observed. treatment with an immune globulin preparation may cause a precipitous fall in blood pressure and a Interference with serological testing Normal immunoglobulin (Human), 10%, for Intravenous or Subcutaneous Administration For intravenous or subcutaneous administration, GAMUNEX® should be at room temperature during clinical picture of anaphylaxis, even when the patient is not known to be sensitive to immune globulin administration. preparations. Adrenalin and other appropriate supportive care should be available for the treatment After injection of immunoglobulin the transitory rise of the various passively transferred antibodies of an acute anaphylactic reaction. in the patient’s blood may result in misleading positive results in serological testing. Passive Intravenous (IV) True anaphylactic reactions to GAMUNEX® may occur in recipients with documented prior histories transmission of antibodies to erythrocyte antigens e.g.
    [Show full text]
  • Short Bowel Syndrome with Intestinal Failure Were Randomized to Teduglutide (0.05 Mg/Kg/Day) Or Placebo for 24 Weeks
    Short Bowel (Gut) Syndrome LaTasha Henry February 25th, 2016 Learning Objectives • Define SBS • Normal function of small bowel • Clinical Manifestation and Diagnosis • Management • Updates Basic Definition • A malabsorption disorder caused by the surgical removal of the small intestine, or rarely it is due to the complete dysfunction of a large segment of bowel. • Most cases are acquired, although some children are born with a congenital short bowel. Intestinal Failure • SBS is the most common cause of intestinal failure, the state in which an individual’s GI function is inadequate to maintain his/her nutrient and hydration status w/o intravenous or enteral supplementation. • In addition to SBS, diseases or congenital defects that cause severe malabsorption, bowel obstruction, and dysmotility (eg, pseudo- obstruction) are causes of intestinal failure. Causes of SBS • surgical resection for Crohn’s disease • Malignancy • Radiation • vascular insufficiency • necrotizing enterocolitis (pediatric) • congenital intestinal anomalies such as atresias or gastroschisis (pediatric) Length as a Determinant of Intestinal Function • The length of the small intestine is an important determinant of intestinal function • Infant normal length is approximately 125 cm at the start of the third trimester of gestation and 250 cm at term • <75 cm are at risk for SBS • Adult normal length is approximately 400 cm • Adults with residual small intestine of less than 180 cm are at risk for developing SBS; those with less than 60 cm of small intestine (but with a
    [Show full text]
  • Polymyxin B Use Associated with Severe Hypotensive Episodes
    ntimicrob Mehta et al., J Antimicro 2015, 1:1 A ia f l o A l g DOI: 10.4172/2472-1212.1000102 a e n n r Journal of t u s o J ISSN: 2472-1212 Antimicrobial Agents Case Report Open Access Polymyxin B use Associated with Severe Hypotensive Episodes Mehta M1*, Baron JM1, Nelson BC1, Muir J1 and Pereira MR2 1NewYork-Presbyterian Hospital, USA 2Columbia University Medical Center, USA Abstract Polymyxin B was developed in the 1940s but was infrequently used because of renal toxicity. Since the rise of infections due to multidrug resistant gram-negative organisms, polymyxin B has re-emerged as an important agent. However, its toxicity is still not fully elucidated. In this report, we describe two cases of multiple hypotensive events occurring after polymyxin B administration. Management strategies, such as slowing the infusion rate and administering diphenhydramine, did not mitigate the hypotension. We also describe relatively high polymyxin levels correlated with this effect in one of these cases. Keywords: Polymyxin; Toxicity; Hypotension While hypotension is usually a complication of sepsis, details in this case suggest that the episodes of hypotension are more related Case 1 to polymyxin B administration than an uncontrolled infection. The A 35-year-old-woman was admitted to our hospital for management episodes of hypotension started to occur only after polymyxin B and of newly diagnosed acute promyelocytic leukemia. Twelve days after other antibiotics were initiated. There is good evidence, with negative initiation of chemotherapy, she developed a fever to 38.0°C. Cultures follow-up cultures, resolution of fever, and improving imaging, that of her urine and blood grew a carbapenem-resistant Escherichia coli the infection was controlled by the time that the hypotensive episodes susceptible to polymyxin B (minimum inhibitory concentration started.
    [Show full text]
  • Remifentanil Hydrochloride)
    NDA 20-630/S-005 Page 3 Ultiva® for Injection (remifentanil hydrochloride) For IV Use Only DESCRIPTION ULTIVA (remifentanil hydrochloride) for Injection is a µ-opioid agonist chemically designated as a 3- [4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidine]propanoic acid methyl ester, hydrochloride salt, C20H28N2O5·HCl, with a molecular weight of 412.91. It has the following chemical structure: ULTIVA is a sterile, nonpyrogenic, preservative-free, white to off-white lyophilized powder for intravenous (IV) administration after reconstitution and dilution. Each vial contains 1, 2, or 5 mg of remifentanil base; 15 mg glycine; and hydrochloric acid to buffer the solutions to a nominal pH of 3 after reconstitution. When reconstituted as directed, solutions of ULTIVA are clear and colorless and contain remifentanil hydrochloride (HCl) equivalent to 1 mg/mL of remifentanil base. The pH of reconstituted solutions of ULTIVA ranges from 2.5 to 3.5. Remifentanil HCl has a pKa of 7.07. Remifentanil HCl has an n-octanol:water partition coefficient of 17.9 at pH 7.3. CLINICAL PHARMACOLOGY ULTIVA is a µ-opioid agonist with rapid onset and peak effect, and short duration of action. The µ-opioid activity of ULTIVA is antagonized by opioid antagonists such as naloxone. Unlike other opioids, ULTIVA is rapidly metabolized by hydrolysis of the propanoic acid-methyl ester linkage by nonspecific blood and tissue esterases. ULTIVA is not a substrate for plasma cholinesterase (pseudocholinesterase) and, therefore, patients with atypical cholinesterase are expected to have a normal duration of action. Pharmacodynamics: The analgesic effects of ULTIVA are rapid in onset and offset.
    [Show full text]
  • Package Insert
    response and target IgG at 15 mL/hr/site 20 mL/hr/site HIGHLIGHTS OF PRESCRIBING trough level (2.2). INFORMATION . Ensure that patients with pre-existing renal insufficiency are not volume depleted; discontinue GAMMAGARD LIQUID if renal function These highlights do not include all the information needed to use deteriorates. (2.3, 5.2) GAMMAGARD LIQUID safely and effectively. See full prescribing . For patients at risk of renal dysfunction or thrombotic events, administer information for GAMMAGARD LIQUID. GAMMAGARD LIQUID at the minimum infusion rate practicable. (2.3, 5.2, 5.4) GAMMAGARD LIQUID, Immune Globulin Infusion (Human), 10% --------------DOSAGE FORMS AND STRENGTHS--------- Solution, for intravenous and subcutaneous administration . Aqueous solution containing 10% IgG (100 milligram/mL) (3) ---------------------CONTRAINDICATIONS ------------------- Initial U.S. Approval: 2005 . Anaphylactic or severe systemic hypersensitivity reactions to Immune Warning: RENAL DYSFUNCTION & ACUTE RENAL FAILURE Globulin (Human) (4) See full prescribing information for complete boxed warning . IgA deficient patients with antibodies against IgA and a history of . Renal dysfunction, acute renal failure, osmotic nephropathy, and hypersensitivity (4) death may occur with immune globulin intravenous (IGIV) -----------------WARNINGS AND PRECAUTIONS---------- products in predisposed patients. Renal dysfunction and acute . IgA deficient patients with antibodies to IgA are at greater risk of developing failure occur more commonly in patients receiving IGIV severe hypersensitivity and anaphylactic reaction. (5.1) products containing sucrose. GAMMAGARD LIQUID does not . Monitor renal function, including blood urea nitrogen, serum creatinine, and contain sucrose. urine output in patients at risk of acute renal failure. (5.2) . For patients at risk of renal dysfunction or failure, administer . Hyperproteinemia, increased serum viscosity and hyponatremia may occur.
    [Show full text]
  • Treatment for Calcium Channel Blocker Poisoning: a Systematic Review
    Clinical Toxicology (2014), 52, 926–944 Copyright © 2014 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2014.965827 REVIEW ARTICLE Treatment for calcium channel blocker poisoning: A systematic review M. ST-ONGE , 1,2,3 P.-A. DUB É , 4,5,6 S. GOSSELIN ,7,8,9 C. GUIMONT , 10 J. GODWIN , 1,3 P. M. ARCHAMBAULT , 11,12,13,14 J.-M. CHAUNY , 15,16 A. J. FRENETTE , 15,17 M. DARVEAU , 18 N. LE SAGE , 10,14 J. POITRAS , 11,12 J. PROVENCHER , 19 D. N. JUURLINK , 1,20,21 and R. BLAIS 7 1 Ontario and Manitoba Poison Centre, Toronto, ON, Canada 2 Institute of Medical Science, University of Toronto, Toronto, ON, Canada 3 Department of Clinical Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada 4 Direction of Environmental Health and Toxicology, Institut national de sant é publique du Qu é bec, Qu é bec, QC, Canada 5 Centre Hospitalier Universitaire de Qu é bec, Qu é bec, QC, Canada 6 Faculty of Pharmacy, Université Laval, Qu é bec, QC, Canada 7 Centre antipoison du Qu é bec, Qu é bec, QC, Canada 8 Department of Medicine, McGill University, Montr é al, QC, Canada 9 Toxicology Consulting Service, McGill University Health Centre, Montr é al, QC, Canada 10 Centre Hospitalier Universitaire de Qu é bec, Qu é bec, QC, Canada 11 Centre de sant é et services sociaux Alphonse-Desjardins (CHAU de Lévis), L é vis, QC, Canada 12 Department of Family Medicine and Emergency Medicine, Universit é Laval, Québec, QC, Canada 13 Division de soins intensifs, Universit é Laval, Qu é bec, QC, Canada 14 Populations
    [Show full text]
  • Oxytocin to Accelerate Or Induce Labour
    CLINICAL PRACTICE GUIDELINE OXYTOCIN CLINICAL PRACTICE GUIDELINE OXYTOCIN TO ACCELERATE OR INDUCE LABOUR Institute of Obstetricians and Gynaecologists, Royal College of Physicians of Ireland and the Clinical Strategy and Programmes Division, Health Service Executive Version: 1.0 Publication date: April 2016 Guideline No: 36 Revision date: April 2019 CLINICAL PRACTICE GUIDELINE OXYTOCIN Table of Contents 1. Revision History ....................................................................................................................... 3 2. Key recommendations .......................................................................................................... 3 3. Purpose and Scope ................................................................................................................. 4 4. Background ............................................................................................................................... 5 5. Methodology .............................................................................................................................. 9 6. Clinical guideline ................................................................................................................... 10 7. References .............................................................................................................................. 16 8. Implementation Strategy ................................................................................................... 19 9. Key Performance Indicators ............................................................................................
    [Show full text]