ON Semiconductor Is

Total Page:16

File Type:pdf, Size:1020Kb

ON Semiconductor Is ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. AN1045/D Series Triacs In AC High Voltage Switching Circuits By George Templeton http://onsemi.com Thyristor Applications Engineer APPLICATION NOTE INTRODUCTION Edited and Updated This paper describes the series connection of triacs to winding, and start capacitor voltage. This voltage increases create a high voltage switch suitable for operation at volt- when triac turn-off occurs at higher rpm. ages up to 2000 Volts. They can replace electromechanical contactors or extend their current rating and lifetime. Motor TRIGGERING starters and controllers operating at line voltages of 240 Figure 1 illustrates a series thyristor switching circuit. In Volts or more require high-voltage switches. Transformer this circuit, the top triac triggers in Quadrant 1 when the action and resonant snubber charging result in voltages bottom triac triggers in Quadrant 3. When the optocoupler much greater than the peak of the line. Triacs can be sub- turns on, gate current flows until the triacs latch. At that jected to both commutating and static dV/dt when multiple time, the voltage between the gate terminals drops to about switching devices are present in the circuit. Snubber 0.6 Volts stopping the gate current. This process repeats designs to prevent static dV/dt turn-on result in higher volt- each half cycle. The power rating of the gate resistor can be ages at turn-off. Variable load impedances also raise volt- small because of the short duration of the gate current. age requirements. Optocoupler surge or triac gate ratings determine the mini- The benefits of series operation include: higher blocking mum resistance value. For example, when the maximum voltage, reduced leakage, better thermal stability, higher optocoupler ITSM rating is 1 A: dV/dt capability, reduced snubber costs, possible snubber- R u+ V ńI (1.0) less operation, and greater latitude in snubber design. The g peak max advantages of triacs as replacements for relays include: Rg + 750 Vń1A+ 750 Ohm • Small size and light weight The triacs retrigger every half cycle as soon as the line • Safety — freedom from arcing and spark initiated voltage rises to the value necessary to force the trigger cur- explosions rent. The instantaneous line voltage V is • Long lifespan — contact bounce and burning eliminated + ) ) V IGT Rg 2VGT 2VTM (1.1) • Fast operation — turn-on in microseconds and turn-off in milliseconds where VGT, IGT are data book specifications for the triac and • Quiet operation VTM is the on-voltage specification for the optocoupler. The phase delay angle is Triacs can be used to replace the centrifugal switch in capacitor start motors. The blocking voltage required of the q + *1ƪ V ƫ triac can be much greater than the line voltage would sug- d SIN Ǹ (1.2) 2 V gest. It must block the vector sum of the line, auxiliary LINE Semiconductor Components Industries, LLC, 1999 1 Publication Order Number: August, 1999 – Rev. 2 AN1045/D AN1045/D IG IL G MEAN MT1 RG DESIGN ∆I CAPABILITY MT2 6 σ 6 σ 3 σ 3 σ MT2 PROCESS WIDTH G MT1 Figure 6.1. Series Switch Figure 6.2. Designing for Probable Leakage STATIC VOLTAGE SHARING turn leads to greater leakage. If the rate of heat release at the Maximum blocking voltage capability results when the junction exceeds the rate of removal as temperature triacs share voltage equally. The blocking voltage can be dc increases, this process repeats until the leakage current is or ac. A combination of both results when the triac switches sufficient to trigger the thyristor on. the start winding in capacitor start motors. In the simple DC blocking simplifies analysis. A design providing series connection, both triacs operate with an identical leak- stable dc operation guarantees ac performance. AC opera- age current which is less than that of either part operated tion allows smaller heatsinks. alone at the same voltage. The voltages across the devices The last term in the stability equation is the applied volt- are the same only when their leakage resistances are identi- age when the load resistance is low and the leakage causes cal. Dividing the voltage by the leakage current gives the negligible voltage drop across it. The second term is the leakage resistance. It can range from 200 kohm to 2000 thermal resistance from junction to ambient. The first term megohm depending on device characteristics, temperature, describes the behavior of leakage at the operating condi- and applied voltage. tions. For example, if leakage doubles every 10°C, a triac Drawing a line corresponding to the measured series operating with 2 mA of leakage at 800 Vdc with a 6°C/W leakage on each device’s characteristic curve locates its thermal resistance is stable because operating point. Figure 3a shows the highest and lowest ° 2mA@ 6 C @ 800 V + 0.96 leakage units from a sample of 100 units. At room tempera- 10°C W ture, a leakage of 350 nA results at 920 Volts. The lowest Operating two triacs in series improves thermal stability. leakage unit blocks at the maximum specified value of 600 When two devices have matched leakages, each device sees Volts, while the highest blocks 320 Volts. A 50 percent half the voltage and current or 1/4 of the power in a single boost results. triac. The total leakage dissipation will approach half that Figure 3b shows the same two triacs at rated TJmax. The of a single device operated at the same voltage. The addi- magnitude of their leakage increased by a factor of about tional voltage margin resulting from the higher total block- 1000. Matching between the devices improved, allowing ing voltage reduces the chance that either device will oper- operation to 1100 Volts without exceeding the 600 Volt rat- ate near its breakdown voltage where the leakage current ing of either device. increases rapidly with small increments in voltage. Higher Identical case temperatures are necessary to achieve voltage devices have lower leakage currents when operated good matching. Mounting the devices closely together on a near breakdown. Consequently, the highest breakover volt- common heatsink helps. age unit in the pair will carry the greatest proportion of the A stable blocking condition for operation of a single triac burden. If the leakage current is large enough to cause sig- with no other components on the heatsink results when nificant changes in junction temperature, (∆TJ = φJC PD), the effect will tend to balance the voltage division between dIMT dTJ dPJ @ @ t 1 (2.0) the two by lowering the leakage resistance of the hotter dT dP dI J J MT unit. If the leakage mismatch between the two is large, Thermal run-away is a regenerative process which occurs nearly all the voltage will drop across one device. As a whenever the loop gain in the thermal feedback circuit result there will be little benefit connecting two in series. reaches unity. An increase in junction temperature causes Series blocking voltage depends on leakage matching. increased leakage current and higher power dissipation. Blocking stability depends on predictable changes in leak- Higher power causes higher junction temperature which in age with temperature.
Recommended publications
  • TRIAC Overvoltage Protection Using a Transil™
    AN1966 Application note TRIAC overvoltage protection using a Transil™ Introduction In most of their applications, TRIACs are directly exposed to overvoltages coming from the mains, as described in IEC 61000-4-5 or IEC 61000-4-4 standards. When TRIACs are used to drive resistive loads (ex: temperature regulation), it is essential to provide them with efficient overvoltage protection to prevent any turn-on in breakover mode that could lead to device damage. A traditional method to clamp the voltage is to use a varistor in parallel across the TRIAC. But with high power loads (a few kW), the current through the varistor is very high in case of surge voltages (a few hundred amperes). The varistor is then not efficient enough, due to its dynamic resistor, to limit the TRIAC voltage to a low value. We present here a solution that can be used for these kinds of applications and also for all applications where TRIAC voltage protection is required. It should be noted that the overvoltages could also come from the overvoltages that appear at device turn-off due to the TRIAC holding current. This phenomenon occurs mainly with TRIACs controlling low rms current (15-50 mA), high inductive loads like valves. For more information about such behavior, please refer to AN1172. Contents 1 Why overvoltage protection is required . 2 2 Overvoltage protection solution . 3 3 Transil choice for efficient TRIAC voltage protection . 6 3.1 Normal operation: check VRM voltage . 6 3.2 Surge voltage clamping: check max VCL voltage . 6 4 Experimental validation example . 8 5 Conclusion .
    [Show full text]
  • Triac Control with a Microcontroller Powered from a Positive Supply
    AN440 Application note Triac control with a microcontroller powered from a positive supply Introduction This application note explains how to implement a control circuit to drive an AC switch (Triac, ACS or ACST) in case the microcontroller unit (MCU) is supplied with a positive voltage. The driving circuit will also depends on the kind of Triac used and also if other supplies (positive or negative) are available. We also deal about the case of insulated or non-insulated supplies. It is recommended to refer to AN4564 which explains why positive supplies are usually implemented and how simple solutions can be implemented to get a negative supply. Refer also to AN3168 for information about AC switch control circuits in case the microcontroller is supplied with a negative power supply. AN440 - Rev 4 - March 2020 www.st.com For further information contact your local STMicroelectronics sales office. AN440 Positive supply defintion and AC switch triggering quadrants 1 Positive supply defintion and AC switch triggering quadrants 1.1 Positive power supply A positive power supply is a supply where its reference level (VSS) is connected to the mains (line or neutral). The VDD level is then above the mains terminal as shown in Figure 1. If the supply is a 5 V power supply, then VDD is 5 V above the mains reference. This is why such a supply is called a positive supply (compared to a negative supply as shown in AN3168). Figure 1. Positive supply basic schematic 1.2 AC switch triggering quadrants To switch-on an AC switch, like any bipolar device, a gate current must be applied between its gate pin (G) and its drive reference terminal (refer also to AN3168).
    [Show full text]
  • An Application of TRIAC to Capacitor Motor for Hermetic Compressor K
    Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 1984 An Application of TRIAC to Capacitor Motor for Hermetic Compressor K. Nakane Y. Tozaki H. Sakamoto Follow this and additional works at: https://docs.lib.purdue.edu/icec Nakane, K.; Tozaki, Y.; and Sakamoto, H., "An Application of TRIAC to Capacitor Motor for Hermetic Compressor" (1984). International Compressor Engineering Conference. Paper 449. https://docs.lib.purdue.edu/icec/449 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html AN APPLICA'l'ION OF 'l'RIAC TO CAPACI'l'OR 1-10'l'OR FOR lll~Rt~IC'riC COMPRSSO!l Ka.zuhiro Nakane, Yasuhiro To?.nki,. Ilirota.ka Sakamoto Shizuoka. Worlw, Mitsubishi Electri.c Corporation Shizuoka City , Ja.pan ABSTRACT oncy and output rati.ngo are 100 V ,50/60 J!v. and 100 11. It is a. 1mi 1 t-in motor for the rotary type This paper refers to a.n n.pplication study of 'l'lUAC hermetic compressor shown in Ji'ie;. 2. 'l'hore are to PSC motor for thft hermetic compessor. It is three types of the wirings of the starting device 1-1ell lcnown that 'l'HIAC rlel nys pharJa ane,le of the for thifl motor,as shown i.n lcig, 3. A shows CSR current and has no losses if it is consider(\ as moto:r,n shows P'l'C asoist CSR motor and C sho~1s ideal flwitch.
    [Show full text]
  • Thyristors & Triacs
    APPLICATION NOTE Thyristors & Triacs - Ten Golden Rules for Success In Your Application. This Technical Publication aims to provide an threshold current IGT, within a very short time known as interesting, descriptive and practical introduction to the the gate-controlled turn-on time, tgt, the load current can golden rules that should be followed in the successful flow from ’a’ to ’k’. If the gate current consists of a very use of thyristors and triacs in power control applications. narrow pulse, say less than 1µs, its peak level will have to increase for progressively narrower pulse widths to Thyristor guarantee triggering. A thyristor is a controlled rectifier where the When the load current reaches the thyristor’s latching unidirectional current flow from anode to cathode is current IL, load current flow will be maintained even after initiated by a small signal current from gate to cathode. removal of the gate current. As long as adequate load current continues to flow, the thyristor will continue to akconduct without the gate current. It is said to be latched ON. Note that the VGT,IGT and IL specifications given in data g are at 25 ˚C. These parameters will increase at lower temperatures, so the drive circuit must provide adequate Fig. 1. Thyristor. voltage and current amplitude and duration for the The thyristor’s operating characteristic is shown in lowest expected operating temperature. Fig. 2. Rule 1. To turn a thyristor (or triac) ON, a gate current On-state ≥ Forward IGT must be applied until the load current is current characteristic ≥ IL. This condition must be met at the lowest expected operating temperature.
    [Show full text]
  • How to Implement a SCR Or a Triac in a Hybride Relay Application
    AN4993 Application note How to implement an SCR or a Triac in hybrid relay applications Introduction This document gives some key information about the design of the solid-state silicon AC switch stage of a hybrid relay, which can drive resistive, capacitive or inductive AC loads, such as: heater resistors, motors for industry, power tools or appliance applications. Section 1 describes the hybrid relay principle. Circuit and functional diagram is the first topic to be handled followed by its advantages and drawbacks and finally the main targeted applications are listed. Section 2 specifies different ways to drive the AC switch implemented on the hybrid relay circuit. Section 3 provides some design tips to pass electromagnetic compatibility standards, especially to reduce EMI noise. March 2017 DocID030191 Rev 1 1/23 www.st.com Contents AN4993 Contents 1 Hybrid relay ...................................................................................... 5 1.1 General schematic ............................................................................ 5 1.2 Advantages and drawbacks .............................................................. 6 1.3 Applications ....................................................................................... 7 1.3.1 Water and room heaters ..................................................................... 7 1.3.2 Home automation smart plug ............................................................. 7 1.3.3 Inrush limiter for power supply ..........................................................
    [Show full text]
  • Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps
    Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps Dustin Rand (Raytheon), Brad Lehman* (Northeastern University), Anatoly Shteynberg (Exclara, Inc.) *Dept. ECE; Northeastern University; Boston, MA 02115; [email protected] Abstract - This paper discusses the difficulties in dimming Edison metric tons of carbon emission, as well as alleviate the need of socket LED lamps directly from residential phase modulated more than 40 1000MW power stations [9,10]. dimmer switches. In order to explain these difficulties PSpice Dimmers models for the dimmers are proposed that necessarily include Residential dimmers are designed to meet the needs of diac characteristics to improve accuracy. A method to dim the homeowners and architects in both style and function. LEDs from the residential dimmers is discussed. Commercial companies offer a complete line of residential dimmers with an amazing array of colors that coordinate with the most popular interior colors and finishes. Commercial I. INTRODUCTION: LED LIGHTING - THE NEXT dimmers and dimming systems are designed to meet the TECHNOLOGICAL REVOLUTION? requirements of architects and specifiers of commercial spaces such as hotels, restaurants, offices and warehouses. Within the last few years, new LED materials and What is a Phase Modulated Dimmer? improved production processes have resulted in bright LEDs Incandescent bulbs primarily utilize phase modulating in colors throughout the visible spectrum with efficacies dimming through triac switches to control the power sent to greater than incandescent lamps [1,2]. In fact, recent the bulb. Dimming fluorescent lighting is possible by technological breakthroughs [3-7] in the high brightness retrofitting the lighting switches/infrastructure with electronic “White Light” LEDs have experts predicting that the “bright or other dimming ballasts.
    [Show full text]
  • AN3168 Non-Insulated SCR / Triac Control Circuits
    AN3168 Application note Non-insulated SCR / Triac control circuits Introduction In alternating current applications the direct current power supply for low-voltage electronic devices (MCU, LEDs, optocouplers, Triacs and so on) can be provided using one of several different circuits. There are traditionally two major types of power supplies used in appliances, capacitive power supply and linear power supply using a step-down transformer. Today, designers are using more and more switches mode power supplies (SMPS) to achieve higher output current levels and especially lower standby power consumption. The power supply choice is a trade-off between several parameters. These are the cost, the required power, the output voltage level and polarity, the standby power consumption and the necessity or not of an electrical insulation between the mains and the low output DC voltage. This application note considers only non-insulated power supplies. After a brief description of the triggering quadrants and key parameters for SCR, Triac, ACS and ACST, the usual control circuits are described according to the output voltage polarity of the power supply. Finally, some examples of negative power supply circuits are introduced. March 2010 Doc ID 17193 Rev 1 1/20 www.st.com AN3168 Contents Contents 1 Triggering quadrants and key parameters . 3 2 Triggering circuits . 6 2.1 Two kind of power supply bias . 6 2.2 Gate resistor value definition . 6 2.3 SCR and Triac triggering circuit with a positive power supply . 7 2.4 Triac and ACS / ACST triggering circuit with negative power supply . 8 2.5 SCR triggering circuit with negative power supply .
    [Show full text]
  • Thyristors and Triacs Control Gate Trigger Circuits
    1 Lab no. 3 THYRISTORS AND TRIACS CONTROL GATE TRIGGER CIRCUITS 1. Introduction The thyristor is a power semiconductor device with the control terminal called grid or gate (G). The device name comes from the similarity of operation with the gas triode: thiratron transistor. Because the thyristors are mainly used in the controlled rectifier structures, the technical literature calls them as SCR (Semiconductor Controlled Rectifiers) devices. After the series manufacture start in 1957 until the ‘80s of the twentieth century the thyristor was the leader of power semiconductor devices with control electrode. Despite the fact that the thyristor is a half controlled device (through the gate terminal can be only turned on) this switch remains favourite in a wide range of applications because it is robust, can be easily controlled and can operates in high power structures at high voltages and currents with low power conduction losses. To operate, every thyristor require a drive (trigger, control) circuit that provides gate current pulses to induce the on-state. These pulses must have a certain amplitude and duration. The device remains latched in on-state until it is reverse biased. Thus, in forward biased conditions, after the turn-on process, the gate current can be interrupted. Thyristors can be found in various applications such as phase-controlled rectifiers, AC voltage variators, starters, static breakers, cycloconverters, etc. Depending on the requirements, are available on the market several types of thyristors: common thyristors (used in phase-controlled converters at low switching frequency, high voltages and currents), fast thyristors (with a small blocking time), optical thyristors (light-activated through optical fibers), etc.
    [Show full text]
  • Thyristors Triacs Precautions For
    Common Item R07ZZ0011EJ0200 Thyristor・Triac (Previous: REJ27G0020-0100) Rev.2.00 Precautions for Use Aug.7.2019 Contents 1. Use of Thyristors ..................................................................................................................................... 2 (1) How to select current rating .............................................................................................................................. 2 (2) How to select withstanding voltage class........................................................................................................ 2 (3) Cautions on dv/dt ................................................................................................................................................ 3 (4) Cautions on di/dt ................................................................................................................................................. 3 (5) Measures to prevent false triggering ............................................................................................................... 3 2. Use of Triacs ........................................................................................................................................... 4 (1) How to select current rating .............................................................................................................................. 4 (2) How to select withstanding voltage class........................................................................................................ 4 (3)
    [Show full text]
  • TRIAC Specifications and Recommendations (Turn‐On Behavior)
    White Paper TRIAC Specifications and Recommendations (Turn‐On Behavior) 5110 Roanoke Place Suite 101 College Park, MD 20740 ph: 301-474-0607 fax: 240-757-2195 www.dfrsolutions.com [email protected] Unless otherwise indicated, this presentation is considered a draft report Introduction Wiki defines a TRIAC as an electronic component approximately equivalent to two silicon‐controlled rectifiers (SCRs/thyristors) joined in inverse parallel (paralleled but with the polarity reversed) and with their gates connected together. This results in a bidirectional electronic switch which can conduct current in either direction when it is triggered (turned on) and thus doesn't have any polarity. It can be triggered by either a positive or a negative voltage being applied to its gate electrode. Once triggered, the device continues to conduct until the current through it drops below a certain threshold value, the holding current, such as at the end of a half‐cycle of alternating current (AC) main power. This makes the TRIAC a very convenient switch for AC circuits, allowing the control of very large power flows with milliampere‐scale control currents. In addition, applying a trigger pulse at a controllable point in an AC cycle allows one to control the percentage of current that flows through the TRIAC to the load (phase control). OVERVIEW DfR was requested by a customer to identify the critical triac part parameters and determine the margins necessary to ensure the successful operation of their Modular control system. The current triac used is a sensitive gate type. Turn on control circuit o Turn on (latch) when you apply the triggering voltage to the gate and support the valve station current and voltage output to energize the specified number and type of solenoid loads .
    [Show full text]
  • RC Snubber Circuit Design for Triacs
    AN437 Application note RC snubber circuit design for TRIACs Introduction When a TRIAC controls inductive loads, the mains voltage and the load current are not in phase. To limit the slope of the reapplied voltage and ensure right TRIAC turn-off, designer usually used a snubber circuit connected in parallel with the TRIAC. This circuit can also be used to improve TRIAC immunity to fast transient voltages. The subject of this paper is, first of all, to analyze the snubber circuit functions and to propose a method for snubber circuit design in order to improve turn-off commutation. Contents 1 Snubber circuit functions and drawback . 2 1.1 Turn-off improvement . 2 1.1.1 TRIAC turn-off reminder . 2 1.1.2 Snubber circuit benefit at TRIAC turn-off . 3 1.2 Overvoltage limitation at turn-off . 4 1.3 Immunity to fast voltage transient improvement . 5 1.4 Turn-on stress due to snubber circuit discharge . 5 2 How to design snubber circuit for turn-off improvement . 7 2.1 Step response of an RLC series circuit . 7 2.2 RC snubber circuit design . 9 2.2.1 Is the snubber circuit required? . 9 2.2.2 Resistor and capacitor snubber circuit design . 10 3 Conclusion . 14 Appendix A RLC series circuit step response explanation . 15 Revision history . 17 October 2007 Rev 2 1/18 www.st.com Snubber circuit functions and drawback AN437 1 Snubber circuit functions and drawback 1.1 Turn-off improvement 1.1.1 TRIAC turn-off reminder When a TRIAC switches from on-state to off-state, the current passes through zero and the supply voltage is reapplied instantaneously across the structure.
    [Show full text]
  • Triacs and Diacs the Triac
    Triacs and Diacs The Triac Figure 1. Triac Circuit Symbol The triac is similar in operation to two thyristors connected in reverse parallel but using a common gate connection. This gives the triac the ability to be triggered into conduction while having a voltage of either polarity across it. In fact it acts rather like a "full wave" thyristor. Either positive or negative gate pulses may be used. The circuit symbol for the triac is shown in Figure 1. Triacs are mainly used in power control to give full wave control. This enables the voltage to be controlled between zero and full power. With simple "half wave" thyristor circuits the controlled voltage may only be varied between zero and half power as the thyristor only conducts during one half cycle. The triac provides a wider range of control in AC circuits without the need for additional components, e.g. bridge rectifiers or a second thyristor, needed to achieve full wave control with thyristors. The triggering of the triac is also simpler than that required by thyristors in AC circuits, and can normally be achieved using a simple DIAC circuit. A simplified triac control circuit is shown in Figure 2. The operation will be explained after introducing the Diac. Figure 2. Simplified AC Power Control Circuit using a Triac The Diac This is a bi-directional trigger diode used mainly in firing Triacs and Thyristors in AC control circuits. Its circuit symbol (shown in figure 3a) is similar to that of a Triac, but without the gate terminal, in fact it is a simpler device and consists of a PNP structure (like a transistor without a base) and acts basically as two diodes connected cathode to cathode as shown in figure 3b.
    [Show full text]