Paris Lihengiana (Melanthiaceae: Parideae), a New Species from Yunnan, China

Total Page:16

File Type:pdf, Size:1020Kb

Paris Lihengiana (Melanthiaceae: Parideae), a New Species from Yunnan, China Phytotaxa 392 (1): 045–053 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.392.1.4 Paris lihengiana (Melanthiaceae: Parideae), a new species from Yunnan, China ZHUN XU1,2,3§, NENG WEI1,2,3§, YING TAN1, 4§, SHUAI PENG1, 5, VERONICAH MUTELE NGUMBAU1,2,3, GUANG- WAN HU1,2 & QING-FENG WANG1,2 1Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China: E-mail: [email protected], [email protected] 2Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China 3University of Chinese Academy of Sciences, Beijing, China 4Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK 5Colleage of Life Sciences, Hunan Normal University, Changsha, China §These authors contributed equally to this work Abstract Paris lihengiana (Melanthiaceae), a new species from Yunnan Province, China, is described and illustrated based on evi- dence from morphological characters and molecular phylogeny. It differs from other species of Paris in its pubescent stem, pedicel and abaxial leaf surface, as well as other characters. Molecular phylogenetic analysis of 33 taxa in Paris was con- ducted based on nuclear ribosomal ITS and six plastid markers. Paris lihengiana is supported as a new species by both morphological characters and molecular data. Keywords: Chinese flora, Chinese traditional medicine, Liliales, new species, Parideae Introduction Paris Linnaeus (1753: 367), tribe Parideae Bartling (1830: 53; Melanthiaceae) includes 27 species names accepted in The Plant List (2013). These perennial herbs are widespread in Europe and Asia, with most distributed in China. As a Chinese traditional medicine, the dried rhizomes of most species of Paris have been used for treatment of sores, injury, stings and bites by poisonous insects and snakes and are important ingredients in some Chinese traditional patent medicines, such as Yunnan baiyao (ChPC 2015). Most other species of Paris are also regarded as effective medicinal herbs in China, mainly because of saponins in their rhizomes (Man et al. 2010). Parideae are a distinctive tribe of Melanthiaceae, and their inclusion in this family has been controversial (Li 1984, Farmer et al. 2002, 2006, Ji et al. 2006, Huang et al. 2016, Kim et al. 2016). Paris and Trillium Linnaeus (1753: 329) are two pivotal genera, and merosity is the most important morphological trait to distinguish them. In most studies, Paris is considered monophyletic (Li 1984, Farmer et al. 2002, 2006, Ji et al. 2006, Kim et al. 2013). However recent phylogenetic research based on plastid genome sequences showed Paris to be paraphyletic, twelve Paris taxa were divided into two segregate genera: Paris s.s. and Daiswa Raf. (1838: 18; Huang et al. 2016). A sister relationship between Daiswa and Trillium was supported (Huang et al. 2016). Although the plastid genome provides more characters, the number and choice of taxa also matters. Abundant data with inadequate taxon sampling might lead to strong support but incorrect evolutionary reconstructions (Soltis et al. 2004). In that case, more taxa should be included in phylogenomic analyses to support Daiswa as a segregate genus (Huang et al. 2016). So far, the subgeneric circumscription of Paris has not reached an agreement. During the fieldwork in northeastern Yunnan Province in April 2011, a unique population of Paris caught our attention. When compared with cultivated plants and herbarium specimens, it is easily distinguished from all of other species of Paris. Combined with the evidence from molecular phylogenetics, it seems clear that it should be considered a new species. Accepted by Mark Chase: 11 Jan. 2019; published: 12 Feb. 2019 45 Materials and Methods Materials:—This new species was collected from Daxueshan Forest in Weixin County, Yunnan Province, China. Morphologically, the new species was described based on the examination of fresh plants and herbarium specimens. For morphological comparison with similar species, relevant specimens deposited at KUN, PE and HIB were examined, as well as taxonomic descriptions from recently published literature (Ji et al. 2017, Li et al. 2017, Liu et al. 2017, Wang et al. 2017, Yang et al. 2017). Phylogenetic analysis:—Total genomic DNA of the new species was extracted from the specimen (Hu, Wang & Zhao HGW-00655 at HIB) with Mag-MK Plant Genomic DNA extraction kits (Sangon Biotech, Shanghai). In total, 34 taxa were included in phylogenetic analysis, 32 of them were downloaded from GenBank (Table 1). TABLE 1. GenBank accession numbers for samples in the phylogenetic analysis. Species ITS trnL-trnF rbcL atpB ndhF matK psbA-trnH Paris axialis DQ404210 DQ404278 JN417469 KM242704 KM242852 JN417379 DQ404244 Paris bashanensis DQ404205 DQ404273 DQ404239 Paris caobangensis JF977269 JF942760 JF954856 JN045699 Paris cronquistii DQ404214 DQ404281 JF954859 DQ404248 Paris cronquistii var. DQ404221 DQ404289 DQ404255 xichouensis Paris daliensis DQ404226 DQ404294 JF954861 DQ404260 Paris delavayi DQ404215 DQ404283 KM242936 KM242705 KM242853 KM242778 DQ404249 Paris dulongensis DQ404207 DQ404275 KM242937 KM242706 KM242854 KM242779 DQ404241 Paris dunniana DQ404225 DQ404293 KM242938 KM242707 KM242855 KM242780 DQ404259 Paris fargesii DQ404217 DQ404285 KM242939 KM242708 KM242856 JF954875 DQ404251 Paris fargesii var. petiolata DQ404220 DQ404288 DQ404254 Paris forrestii DQ404208 DQ404276 KM242940 KM242709 KM242857 KM242781 DQ404242 Paris incompleta DQ404203 DQ404271 JF942774 KM242710 HG475404 DQ404237 Paris japonica DQ404202 DQ404270 KM242941 KM242711 KM242858 KM242782 DQ404236 Paris luquanensis DQ404219 DQ404287 KM242942 KM242712 KM242859 KM242783 Paris mairei DQ404213 DQ404282 KM242943 KM242713 KM242860 KM242784 DQ404247 Paris marmorata DQ404222 DQ404290 JF942784 JF954899 DQ404256 Paris polyphylla DQ404224 DQ404292 KM242945 KM242715 KM242862 KM242786 DQ404258 Paris polyphylla var. alba DQ663680 Paris polyphylla var. chinensis DQ404218 DQ404286 KM242944 KM242714 KM242861 KM242785 DQ404252 Paris polyphylla var. JF977326 KM242946 KM242716 KM242863 KM242787 JN045743 stenophylla Paris polyphylla var. DQ404223 DQ404291 KM242947 KM242717 KM242864 KM242788 DQ404257 yunnanensis Paris quadrifolia DQ404204 DQ404272 KM360917 KM242718 KM242865 JF954931 DQ404238 Paris rugosa DQ404211 DQ404279 KM242948 KM242719 KM242866 KM242789 DQ404245 Paris tetraphylla AB018806 D28159 AJ417584 AB018833 Paris thibetica DQ404216 DQ404284 KM242949 KM242720 KM242867 KM242790 DQ404250 Paris thibetica var. apetala DQ486016 Paris undulata AY192533 Paris vaniotii DQ404209 DQ404277 KM242950 KM242721 KM242868 KM242791 DQ404243 Paris verticillata DQ404206 DQ404274 JN417471 KM242722 KM242869 JN417381 DQ404240 Paris vietnamensis DQ404212 DQ404280 KM242951 KM242723 KM242870 KM242792 DQ404246 Pseudotrillium rivale AB018822 HG475380 KM242952 KM242724 KM242871 KM242793 AY727185 Paris nitida MK483720 MK492271 MK492269 MK488087 MK492265 MK488085 MK492267 Paris ligengiana MK483719 MK492270 MK492268 MK488086 MK492264 MK488084 MK492266 46 • Phytotaxa 392 (1) © 2019 Magnolia Press XU ET AL. For phylogenetic analyses, we used one nuclear region, ribosomal ITS (White et al. 1990), and six plastid markers, trnL-trnF, psbA-trnH, rbcL, atpB, ndhF, matK (Taberlet et al. 1991, Olmstead et al. 1994, Hoot et al. 1995, Terry et al. 1997, Osaloo et al. 1999, Hayashi et al. 2000, Molvray et al. 2000). PCR products were sequenced by Sangon Biotech using 3730xl DNA Analyzer. Sequence assembly and editing was conducted in Geneious v.5.6.4 (Kearse et al. 2012). MAFFT v.7.222 (Katoh et al. 2013), and Mesquite v.3.2 (Maddison et al. 2017) was used for alignments and dataset editing. For Bayesian inference (BI), suitable DNA substitution models were selected by MrModeltest v.2.3 (Nylander 2004); GTR+I+G was chosen under the Akaike information criterion as the best-fitting model for nrITS and plastid DNA. MrBayes v.3.2.6 (Ronquist et al. 2012) was used to perform Bayesian phylogenetic inference. BI was run with four Markov chains, starting with a random tree, for 10 million generations and sampled every 100th generations. The first 25% of sampled trees were discarded as burn-in. RAxML v.8.2.10 (Stamatakis 2014) was used in maximum likelihood (ML) analysis with GTRGAMMA model, with 1000 ML bootstrap replicates. Taxonomy Paris lihengiana G.W.Hu & Q.F.Wang, sp. nov. (Figs. 1, 2). Type:—CHINA. Yunnan Province: Zhaotong City, Weixin County, Daxueshan Forest, 27°53′N, 104° 46′E, elev. 1440 m, 24 April, 2011, Hu, Wang, Zhao HGW-00655 (holotype: HIB; isotype: HIB). Paris lihengiana is distinguished from all other Paris species by its pubescent stem, abaxial veins and pedicel and other characters (Table 2). Perennial herbs, erect. Rhizome 5.0–8.0 cm long, 0.8–1.0 cm in diam., cylindric, brown externally, white internally, with numerous nodes. Stem 16–40 cm long, green or brownish, covered with silver-grey pubescence. Leaves 5–6 in a whorl at stem apex, 10.0–15.5 × 1.6–2.5 cm, linear-oblong to narrowly elliptic-lanceolate, dark green; apex acuminate, base cuneate or subrotund; petiole ca. 0.5 cm long; adaxial surface glabrous, abaxial surface covered with scattered hairs on veins; leaf margin entire, slightly sinuous, ciliolate; trinerved, veins sunken adaxially and protrudent abaxially. Flower solitary, pedicel 13–16 cm long, green or brownish, with silver-grey hairs. Flower tetramerous or pentamerous; sepals 4 or 5, 2.8–4.0 × 0.8–1.1 cm, lanceolate to narrowly ovate, light green,
Recommended publications
  • Paris Polyphylla Smith
    ISSN: 0974-2115 www.jchps.com Journal of Chemical and Pharmaceutical Sciences Paris polyphylla Smith – A critically endangered, highly exploited medicinal plant in the Indian Himalayan region Arbeen Ahmad Bhat1*, Hom-Singli Mayirnao1 and Mufida Fayaz2 1Dept. of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India 2School of Studies in Botany, Jiwaji University, Gwalior, M.P., India *Corresponding author: E-Mail: [email protected], Mob: +91-8699625701 ABSTRACT India, consisting of 15 agro climatic zones, has got a rich heritage of medicinal plants, being used in various folk and other systems of medicine, like Ayurveda, Siddha, Unani and Homoeopathy. However, in growing world herbal market India’s share is negligible mainly because of inadequate investment in this sector in terms of research and validation of our old heritage knowledge in the light of modern science. Paris polyphylla Smith, a significant species of the genus, has been called as ‘jack of all trades’ owing its properties of curing a number of diseases from diarrhoea to cancer. The present paper reviews the folk and traditional uses of the numerous varieties Paris polyphylla along with the pharmacological value. This may help the researchers especially in India to think about the efficacy and potency of this wonder herb. Due to the importance at commercial level, the rhizomes of this herb are illegally traded out of Indian borders. This illegal exploitation of the species poses a grave danger of extinction of its population if proper steps are not taken for its conservation. Both in situ and ex situ effective conservation strategies may help the protection of this species as it is at the brink of its extinction.
    [Show full text]
  • An Enormous Paris Polyphylla Genome Sheds Light on Genome Size Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.126920; this version posted June 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An enormous Paris polyphylla genome sheds light on genome size evolution and polyphyllin biogenesis Jing Li1,11# , Meiqi Lv2,4,#, Lei Du3,5#, Yunga A2,4,#, Shijie Hao2,4,#, Yaolei Zhang2, Xingwang Zhang3, Lidong Guo2, Xiaoyang Gao1, Li Deng2, Xuan Zhang1, Chengcheng Shi2, Fei Guo3, Ruxin Liu3, Bo Fang3, Qixuan Su1, Xiang Hu6, Xiaoshan Su2, Liang Lin7, Qun Liu2, Yuehu Wang7, Yating Qin2, Wenwei Zhang8,9,*, Shengying Li3,5,10,*, Changning Liu1,11,12*, Heng Li7,* 1CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China. 2BGI-QingDao, Qingdao, 266555, China. 3State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China. 5Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China. 6State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China. 7Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. 8BGI-Shenzhen, Shenzhen 518083, China. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.126920; this version posted June 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Ecological Study of Paris Polyphylla Sm
    ECOPRINT 17: 87-93, 2010 ISSN 1024-8668 Ecological Society (ECOS), Nepal www.nepjol.info/index.php/eco; www.ecosnepal.com ECOLOGICAL STUDY OF PARIS POLYPHYLLA SM. Madhu K.C.1*, Sussana Phoboo2 and Pramod Kumar Jha2 1Nepal Academy of Science and Technology, Khumaltar, Kathmandu 2Central Department of Botany, Tribhuvan Univeristy, Kirtipur, Kathmandu *Email: [email protected] ABSTRACT Paris polyphylla Sm. (Satuwa) one of the medicinal plants listed as vulnerable under IUCN threat category was studied in midhills of Nepal with the objective to document its ecological information. The present study was undertaken to document the ecological status, distribution pattern and reproductive biology. The study was done in Ghandruk Village Development Committee. Five transects were laid out at 20–50m distance and six quadrats of 1m x 1m was laid out at an interval of 5m. Plant’s density, coverage, associated species, litter coverage and thickness were noted. Soil test, seed's measurement, output, viability and germination, dry biomass of rhizome were also studied. The average population density of the plant in study area was found to be low (1.78 ind./m2). The plant was found growing in moist soil with high nutrient content. No commercial collection is done in the study area but the collection for domestic use was found to be done in an unsustainable manner. Seed viability was found low and the seeds did not germinate in laboratory conditions even under different chemical treatments. The plant was found to reproduce mainly by vegetative propagation in the field. There seems to be a need for raising awareness among the local people about the sustainable use of the rhizome and its cultivation practice for the conservation of this plant.
    [Show full text]
  • Flora of Deepdale 2020
    Flora of Deepdale 2020 John Durkin MSC. MCIEEM www.durhamnature.co.uk [email protected] Introduction Deepdale is a side valley of the River Tees, joining the Tees at Barnard Castle. Its moorland catchment area is north of the A66 road across the Pennines. The lower three miles of the dale is a steep-sided rocky wooded valley. The nature reserve includes about half of this area. Deepdale has been designated as a Local Wildlife Site by Durham County Council. Deepdale is one of four large (more than 100 hectare) woods in Teesdale. These are important landscape-scale habitat features which I have termed “Great Woods”. The four Teesdale Great Woods are closely linked to each other, and are predominantly “ancient semi-natural” woods, both of these features increasing their value for wildlife. The other three Teesdale Great Woods are the Teesbank Woods upstream of Barnard Castle to Eggleston, the Teesbank Woods downstream from Barnard Castle to Gainford, and the woods along the River Greta at Brignall Banks. The habitats and wildlife of the Teesdale four are largely similar, with each having its particular distinctiveness. The Teesbank Woods upstream of Barnard Castle have been described in a booklet “A guide to the Natural History of the Tees Bank Woods between Barnard Castle and Cotherstone” by Margaret Morton and Margaret Bradshaw. Most of these areas have been designated as Local Wildlife Sites. Two areas, “Shipley and Great Wood” near Eggleston, and most of Brignall Banks have the higher designation, “Site of Special Scientific Interest”. There are about 22 Great Woods in County Durham, mainly in the well- wooded Derwent Valley, with four along the River Wear, three large coastal denes and the four in Teesdale.
    [Show full text]
  • The Bear in Eurasian Plant Names
    Kolosova et al. Journal of Ethnobiology and Ethnomedicine (2017) 13:14 DOI 10.1186/s13002-016-0132-9 REVIEW Open Access The bear in Eurasian plant names: motivations and models Valeria Kolosova1*, Ingvar Svanberg2, Raivo Kalle3, Lisa Strecker4,Ayşe Mine Gençler Özkan5, Andrea Pieroni6, Kevin Cianfaglione7, Zsolt Molnár8, Nora Papp9, Łukasz Łuczaj10, Dessislava Dimitrova11, Daiva Šeškauskaitė12, Jonathan Roper13, Avni Hajdari14 and Renata Sõukand3 Abstract Ethnolinguistic studies are important for understanding an ethnic group’s ideas on the world, expressed in its language. Comparing corresponding aspects of such knowledge might help clarify problems of origin for certain concepts and words, e.g. whether they form common heritage, have an independent origin, are borrowings, or calques. The current study was conducted on the material in Slavonic, Baltic, Germanic, Romance, Finno-Ugrian, Turkic and Albanian languages. The bear was chosen as being a large, dangerous animal, important in traditional culture, whose name is widely reflected in folk plant names. The phytonyms for comparison were mostly obtained from dictionaries and other publications, and supplemented with data from databases, the co-authors’ field data, and archival sources (dialect and folklore materials). More than 1200 phytonym use records (combinations of a local name and a meaning) for 364 plant and fungal taxa were recorded to help find out the reasoning behind bear-nomination in various languages, as well as differences and similarities between the patterns among them. Among the most common taxa with bear-related phytonyms were Arctostaphylos uva-ursi (L.) Spreng., Heracleum sphondylium L., Acanthus mollis L., and Allium ursinum L., with Latin loan translation contributing a high proportion of the phytonyms.
    [Show full text]
  • Download TRI News Vol 13 No 2
    JOURNAL OF THE TROPICAL RESOURCES INSTITUTE Yale University School of Forestry & Environmental Studies Fall/Winter, 1994 Vol 13, No 2 TRI Bulletin Archives .. Do Not Remove (I'om Office -Thanks! p - LOCAL HERITAGE RESOURCE International hosting its 1995, 34 TRI NEWS FALL 1994 • HARVESTING GEONOMA DEVERSA (POITEAU) KUNTH IN SOUTHEAST PERU: TOWARD SUSTAINABLE MANAGEMENT Cesar Flores Negron, MFS Candidate Yale School of Forestry and Environmental Studies INTRODUCTION Madre de Dios is the main department (political unit) located in the southeast Peruvian Amazon. Although its population 2 is relatively low (0.5 inhabitantlkm ), it is growing faster (2.5%) than the national average (2.0%) (INE 1984). The people in this region depend on agriculture and extractive activities both for subsistence and income (Clark and Elejalde 1990). Among the extracted natural forest products are the leaves of the understory palm Geonoma deversa, locally known as palmiche. The braided leaves of Geofloma are the dominant roof material for rural houses and also are sold in the city of Puerto Maldonado, where there is an increasing demand for thatched roofing by the low-income, urban population. METHODS Although GeOfloma stands are harvested periodically every One site for each extraction method was chosen: Sandoval two to three years, local extractors are complaining that they Lake and Boca Pariamanu, located 13 km and 22 km, respec­ now need to walk farther into the forest to get the material. tively, from Puerto Maldonado (Fig. 1). In Sandoval, only This perceived scarcity, reflected in farther walking leaves are removed during the harvest, whereas in Boca distances, could be the result of inappropriate har­ Pariamanu, the palm crown is cut before leaf removal.
    [Show full text]
  • Structure and Physiology of Paris-Type Arbuscular Mycorrhizas
    OF 4-+-oz STRUCTURE AND PHYSIOLOGY OF PARIS.TYPE ARBUS CULAR MYCORRHIZAS Timothy R. Cavagnaro Thesis submitted for the degree of I)octor of Philosophy ln The University of Adelaide Faculty of Agricuttural and Natural Resource Sciences Department of Soil and Water Waite Campus The University of Adelaide South Australia September,200L lr Table of contents TABLE OF CONTENTS TABLB OF CONTENTS lt LIST OF FIGURES vlll LIST OF TABLES xlll ABSTRACT xvl PUBLICATIONS DURING CANDIDATURE xvlll DECLARATION ACKNOWLBDGEMENTS xx CHAPTER 1 INTRODUCTION AND REVIEW OF LITERATURE 1.1 Introduction -I 1 1.2 The role of mycorrhizas J 1.2.1 Benefits to the symbionts: an overview 3 1.3 Morphology and development of arbuscular mycorrhizas 5 1.3.1 Sources ofinoculum 5 32 Pre-colonisation events 6 1.3.3 Contact and penetration of roots 7 L3.4 Internal phases of colonisation 8 1,4 Control of arbuscular mycorrhizal morphological types 16 1.5 Absence of arbuscules in arbuscular mycorrhizas t9 1.6 Time-course of development 20 1.7 Cellular development and Laser Scanning Confocal Microscopy 1.8 Phosphorus and arbuscular mycorrhizas 25 -23 1.8.1 Effects of phosphorus on plant growth: mechanisms of uptake, translocation and transfer 25 1.8.2 Effects of phosphorus on colonisation 28 1.9 Conclusions and aims 30 CHAPTER 2 GENERAL MATERIALS AND METHODS 32 2.1 Soils 32 2.2 Plant material 33 2.2.1 Seed sources and germination JJ 2.2.2 Watering and nutrient addition 34 ))? Glasshouse conditions 35 2.3 Fungal material 35 2.3.1 Fungal isolates 35 2.3.2 Inoculum maintenance and
    [Show full text]
  • C-Banding Patterns in Eighteen Taxa of the Genus Paris Sensu Li, Liliaceae
    _??_1992 The Japan Mendel Society Cytologia 57: 181-194, 1992 C-banding Patterns in Eighteen Taxa of the Genus Paris sensu Li, Liliaceae Junko Miyamoto1, Siro Kurita1, Gu Zhilian2 and Li Hen2 1 Department of Biology , Faculty of Science, Chiba University, Japan 2 Kunming Institute of Botany , Academy of Science of China, Kunming, Yunnan, China Accepted October 31, 1991 Paris is a perennial genus distributed from Europe to the Far East . Most species, how ever, are restricted to Asia, excepting a European species P. quadrifolia Linnaeus and a Cau casian species P. incompleta M. -Bieberstein. Hara (1969) studied morphological variation in seven species: P. delavayi Franchet; P. incomplete M. -Bieberstein; P. japonica (Franch . et Sav.) Franchet; P. polyphylla Smith; P. quadrifolia Linnaeus; P. tetraphylla A. Gray; and P. verticillata M. -Bieberstein. Takhtajan (1983) founded a new genus Daiswa for all taxa of Papolyphylla complex, but Li (1988) degraded this to the subgeneric level. The historical back ground of Paris taxonomy and the synonymy of each taxon were summarized by Mitchell (1987, 1988). Karyomorphological studies on Japanese species were carried out by various authors (Gotoh 1933, Haga 1934, 1942, Hara 1969, Kayano 1961, Kurabayashi 1952, Kurabayashi and Samejima 1953, Miyamoto and Kurita 1990, Miyamoto et al. 1991, Noda 1963, Stow 1953, Suzuki and Yoshimura 1986). The standard chromosome numbers reported by these authors are 2n=10 (2X) in P. teteraphylla and P. verticillata and 2n=40 (8X) in P. japonica. The only European species, P. quadrifolia, was examined by many authors (Tischler 1934, Gotoh 1937, Geitler 1938, Darlington 1941, Love and Love 1944, Polya 1950, Skalinska et al.
    [Show full text]
  • Türkiye'deki Paris Cinsi Üzerinde Morfolojik, Anatomik Ve Karyolojik
    www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 7/2 (2014) 57-69 Research article/Araştırma makalesi Morphological, anatomical and karyological investigations on the genus Paris in Turkey Yeter YEŞİL *, Fatma Neriman ÖZHATAY Istanbul University, Faculty of Pharmacy, Deparment of Pharmaceutical Botany, 34116, İstanbul, Turkey Abstract This study presents morphological, anatomical and karyological characteristics of the genus Paris L. represented by 2 species in Turkey: P. incomplete M. Bieb. and P. quadrifolia L. Taxonomically detailed description of the species are based on collected and examined specimens; distributions and illustrations are presented along with anatomical cross sections of leaves, stems, rhizomes and roots and leaf surfaces. The differing anatomical structure of studied plant parts is suitable for use as an additional tool in their identification. Karyotypes of the species are determined, P. incompleta, as 2n = 10, diploid, chromosome formula is 2m+4sm+2st+2t and P. quadrifolia as 2n = 20, tetraploid, chromosome formula is 4m+8sm+2st+2t. Photographies of species in naturel habitat, distribution map of species in Turkey, detailed drawing of flowers and general view of species, drawings and microphotographies of the karyotypes are also presented. Key words: Paris, morphology, anatomy, taxonomy, karyotype ---------- ---------- Türkiye’deki Paris cinsi üzerinde morfolojik, anatomik ve karyolojik araştırmalar Özet Bu çalışma Türkiye’de 2 tür (P. incomplete M. Bieb. ve P. quadrifolia L.) ile temsil edilen Paris L. cinsinin morfolojik, anatomik ve karyolojik özelliklerini içermektedir. Türlerin toplanan ve incelenen örneklere dayanarak yapılan detaylı tanımlamaları, dağılımları ve çizimleri ve yaprak, gövde, rizom ve köklerin enine kesitleri ve yaprakların yüzeysel kesitleri de yer almaktadır.
    [Show full text]
  • Histological and SEM Studies on Somatic Embryogenesis in Rhizome
    The Pharma Innovation Journal 2016; 5(4): 93-99 ISSN: 2277- 7695 Histological and SEM studies on somatic TPI 2016; 5(4): 93-99 © 2016 TPI embryogenesis in rhizome- derived callus of www.thepharmajournal.com Received: 05-02-2016 Panax assamicus. Ban. Accepted: 07-03-2016 Ladaplin Kharwanlang Ladaplin Kharwanlang, Meera C. Das, Suman Kumaria, Pramod Tandon Department of Botany, Centre for Advanced Studies, North-Eastern Hill University, Abstract Shillong 793022, India. Somatic embryogenesis is an important technique of plant biotechnology in medicinally important plants. Ginseng which is the common name referred to species of the genus Panax (Araliaceae), has been valued Meera C. Das as a potentiating oriental herbal medicine. Somatic embryogenesis of Panax assamicus Ban. was initiated Department of Botany, from approximately four-five years old rhizome explant through callogenesis. Highest callus proliferation Centre for Advanced Studies, was observed in MS medium supplemented with 5 mg/L 2,4-D. Eight weeks old callus on being North-Eastern Hill University, transferred to MS medium supplemented with 5mg/L 2,4-D and 0.5mg/ L BAP in combination showed Shillong 793022, India. best result in embryogenic calli which eventually formed somatic embryos. Induction of somatic embryos occurred after 3 months of sub culture in the same medium. Highest germination of somatic embryos Suman Kumaria occurred in 1/2MS medium incorporated with 1.5mg/L gibberellic acid. To confirm the appearance of the Department of Botany, embryo-like structures in greater detail, the structures were observed microscopically by scanning Centre for Advanced Studies, electron microscopy and through histological sections.
    [Show full text]
  • Don't Make Us Choose: Southeast Asia in the Throes of US-China Rivalry
    THE NEW GEOPOLITICS OCTOBER 2019 ASIA DON’T MAKE US CHOOSE Southeast Asia in the throes of US-China rivalry JONATHAN STROMSETH DON’T MAKE US CHOOSE Southeast Asia in the throes of US-China rivalry JONATHAN STROMSETH EXECUTIVE SUMMARY U.S.-China rivalry has intensified significantly in Southeast Asia over the past year. This report chronicles the unfolding drama as it stretched across the major Asian summits in late 2018, the Second Belt and Road Forum in April 2019, the Shangri-La Dialogue in May-June, and the 34th summit of the Association of Southeast Asian Nations (ASEAN) in August. Focusing especially on geoeconomic aspects of U.S.-China competition, the report investigates the contending strategic visions of Washington and Beijing and closely examines the region’s response. In particular, it examines regional reactions to the Trump administration’s Free and Open Indo-Pacific (FOIP) strategy. FOIP singles out China for pursuing regional hegemony, says Beijing is leveraging “predatory economics” to coerce other nations, and poses a clear choice between “free” and “repressive” visions of world order in the Indo-Pacific region. China also presents a binary choice to Southeast Asia and almost certainly aims to create a sphere of influence through economic statecraft and military modernization. Many Southeast Asians are deeply worried about this possibility. Yet, what they are currently talking about isn’t China’s rising influence in the region, which they see as an inexorable trend that needs to be managed carefully, but the hard-edged rhetoric of the Trump administration that is casting the perception of a choice, even if that may not be the intent.
    [Show full text]
  • Phytochemical Diversity and Micropropagation of Paris Polyphylla Rhizomes from Northeast India
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 3, Issue 6 (Nov.- Dec. 2017), PP 43-55 www.iosrjournals.org Phytochemical Diversity And Micropropagation of Paris Polyphylla Rhizomes From Northeast India KhumuckchamSangeeta Devi1,Pramod Tandon1,2,Suman Kumaria1* 1Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong-, Meghalaya. 2 Present Address: Biotech Park, Lucknow-226021, Uttar Pradesh, India. * Corresponding author: Dr. SumanKumaria; Abstract: Identification of medicinal plant for elite genotypes requires assessment of phytochemical diversity across different populations. Such study is fundamental for further scale of plant resources as well as subsequent drug development for treatment of human ailments. The present study was taken up to assess the total steroidal saponins diversity in Paris polyphylla across the Northeast region of India. From the study, it was found that P. polyphylla populations from Khonoma showed the highest total saponins content, recording an average of 32.06mg/g DW in comparison with all the populations under study. The findings of the study were taken up for micropropagation of the Khonoma populations for mass propagation of rhizomes of this high valued plant. Efficiency of two cytokinins with different sucrose concentrations on minirhizome induction was studied, and it was found that 0.5mg/l BAP+6% sucrose and 1.0mg/l 2iP+6% gave the best response giving 88.6% and 89.2% response with 1.27±0.02g fresh weight and 1.36±0.10g fresh weight minrhizome respectively. Keywords: Cytokinins, diversity, genotypes, minirhizomes, saponins --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 07-11-2017 Date of acceptance: 16-11-2017 ----------------------------------------------------------------------------------------------------------------------------- ---------- I.
    [Show full text]