The Odd Case of Graph Coloring Parameterized by Cliquewidth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regular Clique Covers of Graphs
Regular clique covers of graphs Dan Archdeacon Dept. of Math. and Stat. University of Vermont Burlington, VT 05405 USA [email protected] Dalibor Fronˇcek Dept. of Math. and Stat. Univ. of Minnesota Duluth Duluth, MN 55812-3000 USA and Technical Univ. Ostrava 70833Ostrava,CzechRepublic [email protected] Robert Jajcay Department of Mathematics Indiana State University Terre Haute, IN 47809 USA [email protected] Zdenˇek Ryj´aˇcek Department of Mathematics University of West Bohemia 306 14 Plzeˇn, Czech Republic [email protected] Jozef Sir´ˇ aˇn Department of Mathematics SvF Slovak Univ. of Technology 81368Bratislava,Slovakia [email protected] Australasian Journal of Combinatorics 27(2003), pp.307–316 Abstract A family of cliques in a graph G is said to be p-regular if any two cliques in the family intersect in exactly p vertices. A graph G is said to have a p-regular k-clique cover if there is a p-regular family H of k-cliques of G such that each edge of G belongs to a clique in H. Such a p-regular k- clique cover is separable if the complete subgraphs of order p that arise as intersections of pairs of distinct cliques of H are mutually vertex-disjoint. For any given integers p, k, ; p<k, we present bounds on the smallest order of a graph that has a p-regular k-clique cover with exactly cliques, and we describe all graphs that have p-regular separable k-clique covers with cliques. 1 Introduction An orthogonal double cover of a complete graph Kn by a graph H is a collection H of spanning subgraphs of Kn, all isomorphic to H, such that each edge of Kn is contained in exactly two subgraphs in H and any two distinct subgraphs in H share exactly one edge. -
A New Spectral Bound on the Clique Number of Graphs
A New Spectral Bound on the Clique Number of Graphs Samuel Rota Bul`o and Marcello Pelillo Dipartimento di Informatica - University of Venice - Italy {srotabul,pelillo}@dsi.unive.it Abstract. Many computer vision and patter recognition problems are intimately related to the maximum clique problem. Due to the intractabil- ity of this problem, besides the development of heuristics, a research di- rection consists in trying to find good bounds on the clique number of graphs. This paper introduces a new spectral upper bound on the clique number of graphs, which is obtained by exploiting an invariance of a continuous characterization of the clique number of graphs introduced by Motzkin and Straus. Experimental results on random graphs show the superiority of our bounds over the standard literature. 1 Introduction Many problems in computer vision and pattern recognition can be formulated in terms of finding a completely connected subgraph (i.e. a clique) of a given graph, having largest cardinality. This is called the maximum clique problem (MCP). One popular approach to object recognition, for example, involves matching an input scene against a stored model, each being abstracted in terms of a relational structure [1,2,3,4], and this problem, in turn, can be conveniently transformed into the equivalent problem of finding a maximum clique of the corresponding association graph. This idea was pioneered by Ambler et. al. [5] and was later developed by Bolles and Cain [6] as part of their local-feature-focus method. Now, it has become a standard technique in computer vision, and has been employing in such diverse applications as stereo correspondence [7], point pattern matching [8], image sequence analysis [9]. -
Approximating the Minimum Clique Cover and Other Hard Problems in Subtree filament Graphs
Approximating the minimum clique cover and other hard problems in subtree filament graphs J. Mark Keil∗ Lorna Stewart† March 20, 2006 Abstract Subtree filament graphs are the intersection graphs of subtree filaments in a tree. This class of graphs contains subtree overlap graphs, interval filament graphs, chordal graphs, circle graphs, circular-arc graphs, cocomparability graphs, and polygon-circle graphs. In this paper we show that, for circle graphs, the clique cover problem is NP-complete and the h-clique cover problem for fixed h is solvable in polynomial time. We then present a general scheme for developing approximation algorithms for subtree filament graphs, and give approximation algorithms developed from the scheme for the following problems which are NP-complete on circle graphs and therefore on subtree filament graphs: clique cover, vertex colouring, maximum k-colourable subgraph, and maximum h-coverable subgraph. Key Words: subtree filament graph, circle graph, clique cover, NP-complete, approximation algorithm. 1 Introduction Subtree filament graphs were defined in [10] to be the intersection graphs of subtree filaments in a tree, as follows. Consider a tree T = (VT ,ET ) and a multiset of n ≥ 1 subtrees {Ti | 1 ≤ i ≤ n} of T . Let T be embedded in a plane P , and consider the surface S that is perpendicular to P , such that the intersection of S with P is T . A subtree filament corresponding to subtree Ti of T is a connected curve in S, above P , connecting all the leaves of Ti, such that, for all 1 ≤ i ≤ n: • if Ti ∩ Tj = ∅ then the filaments corresponding to Ti and Tj do not intersect, and ∗Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5C9, [email protected], 306-966-4894. -
Edge Clique Covers in Graphs with Independence Number
Edge clique covers in graphs with independence number two Pierre Charbit, Geňa Hahn, Marcin Kamiński, Manuel Lafond, Nicolas Lichiardopol, Reza Naserasr, Ben Seamone, Rezvan Sherkati To cite this version: Pierre Charbit, Geňa Hahn, Marcin Kamiński, Manuel Lafond, Nicolas Lichiardopol, et al.. Edge clique covers in graphs with independence number two. Journal of Graph Theory, Wiley, In press. hal-02969899 HAL Id: hal-02969899 https://hal.archives-ouvertes.fr/hal-02969899 Submitted on 17 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ORIG I NAL AR TI CLE Edge CLIQUE COVERS IN GRAPHS WITH INDEPENDENCE NUMBER TWO Pierre Charbit1 | GeNAˇ Hahn 2 | Marcin Kamiński3 | Manuel Lafond4 | Nicolas Lichiardopol5 | Reza NaserASR1 | Ben Seamone2,6 | Rezvan Sherkati7 1Université DE Paris, IRIF, CNRS, F-75013 Paris, FRANCE The EDGE CLIQUE COVER NUMBER ECC¹Gº OF A GRAPH G IS SIZE OF 2Département d’informatique ET DE THE SMALLEST COLLECTION OF COMPLETE SUBGRAPHS WHOSE UNION RECHERCHE opérationnelle, Université DE Montréal, Canada COVERS ALL EDGES OF G. Chen, Jacobson, Kézdy, Lehel, Schein- 3Institute OF Computer Science, UnivERSITY erman, AND WANG CONJECTURED IN 2000 THAT IF G IS CLAw-free, OF WARSAW, POLAND THEN ECC¹Gº IS BOUNDED ABOVE BY ITS ORDER (DENOTED n). -