Reciprocating Engine Or Combustion Turbine?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jenbacher Type 6 Fact Sheet
Continuously refined based on our extensive experience, Jenbacher type 6 engines are reliable, advanced products serving the 2.0 to 4.4 MW power range. The 1,500 rpm engine speed provides high power density and low installation costs. The type 6 precombustion chamber enables high efficiency with low emissions. Proven design and enhanced components support a service life of 60,000 operating hours before the first major overhaul. The J624 model features the advanced 2-stage turbocharging technology, which offers high electrical efficiency combined with improved flexibility over a wide range of ambient conditions. J612 Adelphi University; Garden City, NY Fuel Engine type Electrical output Thermal output Commissioning Natural gas 1 x J612 1,979 kW 6,053 MBTU/hr 2016 A single engine is located in the second floor basement of Woodruff Hall at Adelphi University. This unit has a special designed Pic enclosure that disassembles into component pieces to access any portion of the gen-set, yet still supports the weight of the exhaust equipment. This unit plant is designed to reduce the university’s energy consumption by providing base load for a portion of the campus. J616 Powdered Milk Factory; Central Valley, CA Fuel Engine type Electrical output Thermal output Commissioning Natural gas 2 x J616 5,312 kW 17,812 MBTU/hr February 2016 Two Jenbacher generators provide valuable electricity to a food processing facility while the heat is used to provide chilling and hot water. J620 Eisenhower Hospital; Rancho Mirage, CA Fuel Engine type Electrical output Thermal output Commissioning Natural gas 2 x J620 6,000 kW 21,000 MBTU/hr March 2007 The Jenbacher cogeneration systems provide power and heat to hospital. -
Ibron E-Spik Ex
A numerical study of mixing phenomena and reaction front propagation in partially premixed combustion engines Ibron, Christian 2019 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Ibron, C. (2019). A numerical study of mixing phenomena and reaction front propagation in partially premixed combustion engines. Department of Energy Sciences, Lund University. Total number of authors: 1 Creative Commons License: Unspecified General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 CHRISTIAN IBRON CHRISTIAN A numerical study mixing -
Major Overhaul Longblock Complete Engine Solution for Major Overhauls
GE Power Major Overhaul Longblock Complete engine solution for major overhauls Product description Core return policy Applicable Units Depending on maintenance schedule a Replaced engine needs to be returned to Jenbacher* unit needs a Major Overhaul get deposit refunded. Core criteria: Type 2** Type 4** at 60.000/80.000 operating hours. With • All core returns need to be announced the Jenbacher exchange engine program, prior to shipment GE offers flexible and dependable solutions Type 3** Type 6** for your maintenance needs. All options • On time return shipment ensure that several parts are thoroughly • Core must be returned fully assembled ** Limitation for older generations checked and parts subject to regular wear • No credit issued if engine is incomplete, and tear are replaced according to valid excessively damaged, cracked, welded, maintenance instructions. corroded, mechanical machined or has non genuine parts installed Product Details • Warranty • Full engine test run with protocol • Updated spare parts book • Updated wiring diagram and software • Optional: maintenance book, user manual Customer Benefits Upfront delivery of a preassembled and complete refurbished exchange engine INSTALL ensures cost savings with reduced plant downtime. This solution combined with UPGRADE MONITOR upgrades to the newest technology is the fastest route to better performance for a second life. REPAIR CONTRACT MATERIAL TRAIN FIELD SERVICE PREDICT *Trademark of the General Electric Company GE Power Longblock type 6 Version C Complete engine solution -
Jenbacher Overhaul Solutions from the Experts Who Built Your Engine
I JB-2 19 023-EN INNIO* is a leading solutions provider of gas engines, power equipment, a digital platform and related services for power generation and gas compression at or near the point of use. With our Jenbacher* and Waukesha* product brands, INNIO pushes beyond the possible and looks boldly toward tomorrow. Our diverse portfolio of reliable, economical and sustainable industrial gas engines generates 200 kW to 10 MW of power for numerous industries globally. We can provide life cycle support to the more than 48,000 delivered gas engines worldwide. And, backed by our service network in more than 100 countries, INNIO connects with you locally for rapid response to your service needs. Headquartered in Jenbach, Austria, the business also has primary operations in Welland, Ontario, Canada, and Waukesha, Wisconsin, US. For more information, visit the company’s website at www.innio.com or contact your local representative: Austria Kenya Russia Achenseestraße 1-3 The Courtyard Presnenskaya Naberezhnaya 10A 6200 Jenbach, Austria General Mathenge Drive 1233112 Moscow, Russia T +43 5244 600 Westlands T +7 495 933 0187 Nairobi, Kenya Canada Singapore P.O Box 41608-00100 200 Buchner Road Level 9, The Metropolis Tower 2 T +254 421 5000 Welland, Ontario, Canada L3B 5N4 11 North Buona Vista Drive T +1 289 932 3537 Lebanon Singapore 138589 Central Building, 1st fl oor T +65 326 2014 China Section 12, lot 2381 No. 1 Hua Tuo Rd. Spain Dimitri Hayek Street Zhangjiang Hi-Tech Park Josefa Valcarcel 26 Sin El Fil - Horsh Tabet Shanghai 201203, China Edifi cio Merrimack III Lebanon T +86 21 38771888 28027 Madrid, Spain T +961 1 501202 T +34 91 587 05 00 Denmark Mexico Samsøvej 31 USA Antonio Dovali Jaime 70 8382 Hinnerup, Denmark Westway Plaza, Piso 4, Torre B T +45 86966 788 11330 Clay Road Ciudad de Mexico Houston, TX 77041, USA Germany CP 01210, Mexico T +1 713 408 6930 Carl-Benz-Str. -
Reliable, Durable and Easy to Handle the Jenbacher P611 Spark Plug an OEM Spare Parts Offer for Jenbacher Type 6 and 9 Gas Engines
Reliable, durable and easy to handle The Jenbacher P611 spark plug An OEM spare parts offer for Jenbacher Type 6 and 9 gas engines Product description Product details Customer benefits At INNIO*, we continuously work to reduce the • Robust and improved ignition • Longer service life emissions from our gas engines, increase performance Better efficiency leads to significantly their performance, and achieve higher Advanced geometry enables better longer lifetime and less exchange efficiencies. A central engine component is temperature control for reduced electrode intervals downtime. our specialized ignition system—and the surfaces wear. spark plug is the key. Our development work • Simplified handling focuses on reliability, long service life and • Uniform burn-off No “re-gapping” of the spark plug is easy handling. Featuring extreme dimensional accuracy, necessary and therefore no additional the annular gap helps ensure exceptionally engine shutdown Our P611 spark plug for the Jenbacher* Type 6 uniform burn-off of the electrode surfaces. and 9 gas engines meets these requirements • Remote monitoring by myPlant in all applications. Thanks to its advanced • Lower exhaust emissions In combination with INNIO’s myPlant* design and our many years of experience in The advanced design effectively avoids remote monitoring system, you get the production of high-performance spark misfiring, enabling decreased exhaust accurate remaining lifetime predictions for plugs, the P611 stands for longer lifetime. emissions, e.g. such as 250 and your Jenbacher spark plugs. This allows you 500 mg NOx/Nm³. to precisely plan your maintenance work. This OEM product is produced in our in-house spark plug production facility in Kapfenberg, • Applicable for all Type 6/9 engine versions • After-sales support Austria. -
Clarke Energy and INNIO Delivering Flexible Generation to Nova Power & Gas in Romania
PRESS RELEASE: Clarke Energy and INNIO Delivering Flexible Generation to Nova Power & Gas in Romania • Clarke Energy supplies 4 INNIO Jenbacher J620 gas engines to the peaking station project. • Construction is ongoing at power plant located in Campia Turzii, Cluj County. • The project will improve efficiency and stability of power to the Reif Industrial Park. Bucharest, Romania — April 16th 2021 — Construction has begun in Campia Turzii, where Clarke Energy and INNIO are delivering a natural-gas fuelled flexible generation plant to Nova Power & Gas SRL, part of the E-INFRA Group The innovative peaking station project consists of 4 INNIO Jenbacher J620 natural gas engines with a total electric power of 13.4 MW. Two of the engines installed with “fast start” capabilities will be utilised for electricity peaking, designed to help balance the fluctuating power requirements of the electricity grid. This peaking plant will provide balancing services at the request of the Transport and System Operator at times of peak demand. The remaining two engines supplied will deliver electricity to the Reif Industrial Park and will provide improved energy efficiency and stability in the area. The project was an important first sales win for Clarke Energy’s Romanian team following the company’s entry into the market through the acquisition of TEB Energy Business in November 2019. With two existing customers who have previously switched from cogeneration to peaking plants, Nova Power & Gas SRL is now the third natural-gas fuelled peaking station in Romania, all equipped with INNIO Jenbacher gas engines. Mircea Bica, CEO of Nova Power & Gas commented “Câmpia Turzii project is our first investment in next-generation power plant based on natural gas with increased efficiency and high operational flexibility. -
Effect of Using Biodiesel As a Fuel in C I Engine
International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 5 Issue 7|| July 2016 || PP. 71-81 Effect of Using Biodiesel as a Fuel in C I Engine Swagatika Acharya1, Tatwa Prakash Pattasani2, Bidyut Prava Jena3 1,2Assistant Professor, Department of Mechanical Engineering, Gandhi Institute For Technology (GIFT), Bhubaneswar 3 Assistant Professor, Department of Mechanical Engineering, Gandhi Engineering College, Bhubaneswar Abstract: Biodiesels are fuels that are made from renewable oils that can usually be used in diesel engines without modification. These fuels have properties similar to fossil diesel oils and have reduced emissions from a cleaner burn due to their higher oxygen content. The present work investigates the performance of three types of biodiesel and diesel fuels in a Mitsubishi 4D68 4 in-line multi cylinder compression ignition (CI) engine using transient test cycle. The test results that will obtain are brake power, specific fuel consumption (SFC), brake thermal efficiency and exhaust emissions. An instrumentation system also will be developed for the engine testing cell and controlled from the control room. Biodiesel was also tested against diesel fuel in Exhaust Gas Recirculation (EGR) system. Thus it is possible that biodiesel fuels may work more effectively than fossil diesel in certain applications. Keywords: Biodiesel, CI engine, transient, Instrumentation, EGR I. Introduction Biodiesel, is the generic terms for all types of Fatty Acid Methyl Ester (FAME) as one among other organic renewable alternative fuel that can be used directly in any conventional diesel engine without modification. They are transesterified vegetable oils that have been adapted to the properties of fossilized diesel fuel and considered to be superior since they have a higher energetic yield been combusted in the diesel engine (Adams 1983) . -
Jenbacher Type 6 Fact Sheet
Continuously refined based on our extensive experience, Jenbacher type 6 engines are reliable, advanced products serving the 2.0 to 4.4 MW power range. The 1,500 rpm engine speed provides high power density and low installation costs. The type 6 precombustion chamber enables high efficiency with low emissions. Proven design and enhanced components support a service life of 60,000 operating hours before the first major overhaul. The J624 model features the advanced 2-stage turbocharging technology, which offers high electrical efficiency combined with improved flexibility over a wide range of ambient conditions. J612 Adelphi University; Garden City, NY Fuel Engine type Electrical output Thermal output Commissioning Natural gas 1 x J612 1,979 kW 6,053 MBTU/hr 2016 A single engine is located in the second floor basement of Woodruff Hall at Adelphi University. This unit has a special designed Pic enclosure that disassembles into component pieces to access any portion of the gen-set, yet still supports the weight of the exhaust equipment. This unit plant is designed to reduce the university’s energy consumption by providing base load for a portion of the campus. J616 Powdered Milk Factory; Central Valley, CA Fuel Engine type Electrical output Thermal output Commissioning Natural gas 2 x J616 5,312 kW 17,812 MBTU/hr February 2016 Two Jenbacher generators provide valuable electricity to a food processing facility while the heat is used to provide chilling and hot water. J620 Eisenhower Hospital; Rancho Mirage, CA Fuel Engine type Electrical output Thermal output Commissioning Natural gas 2 x J620 6,000 kW 21,000 MBTU/hr March 2007 The Jenbacher cogeneration systems provide power and heat to hospital. -
Lean-Burn Or Rich-Burn?
It depends on what meets the customer's application needs Lean‐burn or rich‐burn? GE's Gas Engines business develops lean‐burn and rich‐burn technologies that have proven themselves in minimizing emissions and delivering strong operational performance. The basic differences between lean‐burn and rich‐burn engines, and how to decide which is best for you, are neatly summarized by Christian Trapp, head of performance engineering for Jenbacher gas engines. While lean‐burn gas engines are more economical at increased exhaust gas temperatures allow the use of certain emissions calibration levels and can operate a three‐way catalyst. The resulting high conversation at higher loads, rich‐burn engines can achieve lower rates (for NOx above 99 percent) significantly reduce emission levels with a single after treatment, are all three major types of engine‐out emissions ‐ NOx, more tolerant of broad fuel ranges and ambient CO and HC ‐ and destroy inferior but hazardous conditions, and generally have better transient load pollutants like formaldehyde (CH20). In this way, rich‐ capability," says Trapp. "Neither technology is burn engines can reach a system‐out emission limit inherently superior: Choosing the right one depends below 50 mg/Nm3 (@ 5 percent 02 in the exhaust gas on requirements for fuel flexibility, reliability, power < 0,1 g/bhph) NOx and ultra‐low total hydrocarbon density, gas costs, and compliance with local emissions, leaving a decreased overall greenhouse emissions standards." gas footprint. When it comes to meeting high power‐ density needs or achieving the highest possible BASIC DIFFERENCES AND ADVANTAGES. efficiency at moderate emission limits of 500 or 250 mg/Nm3 NOx (@ 5 percent 02 in the exhaust gas) ‐ Essentially, rich‐burn engines operate at an almost such as those stipulated in the German TA Air or the stoichiometric air/fuel ratio (AFR), which is exactly Gothenburg Protocols ‐ lean burn engines can enough air to burn all of the fuel. -
Stationäre Gasmotoren Verbinden Betriebs- Und Brennstoffflexibilität
STATIONÄRE GASMOTOREN VERBINDEN BETRIEBS- UND BRENNSTOFFFLEXIBILITÄT www.innio.com https://www.lec.at Presenter: EnInnov 2020, Graz INNIO Jenbacher: Dr. Klaus Payrhuber, Dr. Stephan Laiminger Dr. Klaus Payrhuber 13. Februar, 2020 LEC: Prof. Dr. Andreas Wimmer, Dr. Jan Zelenka INNIO Jenbacher INNIO ⁄ INNIO is a leading technology provider of gas engines, power equipment, a digital platform and related services for power generation and gas compression at or near the point of use. With our renowned Jenbacher* and Waukesha* product brands. ⁄ INNIO pushes beyond the impossible and looks boldly toward tomorrow. Our diverse portfolio of reliable, economical and sustainable industrial gas engines generates 200 kW to 10 MW of power for numerous industries globally. We provide life-cycle support for more than 48,000 gas engines worldwide. And, backed by our service network in more than 100 countries, INNIO connects with you locally for rapid response to your service needs. ⁄ Headquartered in Jenbach, Austria, the business also has primary operations in Welland, Ontario, Canada, and Waukesha, Wisconsin, US. All rights reserved February 20 EnInnov 2020, Graz * Indicates a trademark 2 INNIO Products Jenbacher* gas engines Waukesha* gas engines Technology Gas engines (0.3-10.38 MW) Gas engines (0.2-3.6 MW) Oil & Gas Power generation Target segments Power generation Benefits • Electrical efficiency • Hot/high BTU fuels capability • High total efficiency • High altitude and ambient capability • Application diversity • Fast load acceptance • Fuel flexibility -
Presentation 4. CHP Units in Biogas Operation
GE Energy SeparatorsheetJenbacher gas engines UseFECC this - range GTZ of background colors to introduce new sectionsTraining for Biogas Design Institutes - Beijing From Biogas to electricity- CHP-use in operation Thomas Elsenbruch 1/ GE Jenbacher / Thomas Elsenbruch August 13, 2010 GEEnergyInfrastructure Employees: 65,000 • ‘08 revenue: $38.6B • Operating in 140 countries Power & Water Energy Services Oil & Gas • Power generation • Contractual agreements • Drilling & completion • Renewables • Smart Grid • Subsea, offshore & • Gas Engines • Field services onshore • Nuclear • Parts & repairs • LNG & Pipelines • Gasification • Optimization • Pipeline integrity • Water treatment technologies • Refining • Process chemicals • Plant management • Processing 2/ GE Jenbacher / Thomas Elsenbruch August 13, 2010 GE’sJenbacher gasengines A leading manufacturer of gas fueled reciprocating engines for power generation 1,700 employees worldwide, 1,300 in Jenbach/Austria 9,100+ delivered engines / 10,800+ MW worldwide Power range from 0.25 MW to 4 MW Fuelflexibility Natural gas, biogas, flare gas, landfill gas, steel gas, coal mine gas Advanced system solutions Generator sets, container modules cogeneration, trigeneration, CO2-fertilization Environmentalbenefits Low emissions ecomagination solutions Lifetime services plus (parts, repair, CSA, upgrades) 2,000 units under CSA 3/ GE Jenbacher / Thomas Elsenbruch August 13, 2010 Product Program2010: Biogas, SewageGasand Landfill Gas 3.500 Electrical output [kW] 3.000 Thermal output (70°/90°C) [kW] 2.500 -
3.0 ACTUAL ENGINE CYCLE Reciprocating Internal Combustion
3.0 ACTUAL ENGINE CYCLE Reciprocating internal combustion engines operate on actual engine cycles, which are classified mainly into two groups: (i) Spark Ignition engines and (ii) Compression Ignition engines and these classifications are dependent on the mode of the ignition of the air/fuel mixture (charge) in the cylinder. The spark ignition engines operate based on the Otto cycle principle while the compression ignition engines operate basically on the Diesel cycle principle. The sequence of operations required by a reciprocating engine to perform a mechanical work could either be two or four strokes of engine piston motion which translates to one or two crankshaft revolution respectively. The piston of a reciprocating internal combustion engine could be termed as double acting (as seen in steam engines) or single acting (as is seen in most reciprocating internal combustion engines). If the engine cycle of operation takes place in only one side of the piston, its termed single acting while it is termed double acting when the cycle takes place on both sides of the piston. For an internal combustion engine to be efficient the following requirements are to be met: The mixture of fuel and air in the engine cylinder must be in the right proportion. Compression must take place on the mixture of air and fuel or air only before the addition of fuel (this is dependent on the engine cycle operation). The compressed mixture is to be ignited (which could be through the introduction of spark or auto-ignition) and the expanding combustion products used to drive the engine.