PRIA-FEP-SAFE-Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geography and Atmospheric Science 1
Geography and Atmospheric Science 1 Undergraduate Research Center is another great resource. The center Geography and aids undergraduates interested in doing research, offers funding opportunities, and provides step-by-step workshops which provide Atmospheric Science students the skills necessary to explore, investigate, and excel. Atmospheric Science labs include a Meteorology and Climate Hub Geography as an academic discipline studies the spatial dimensions of, (MACH) with state-of-the-art AWIPS II software used by the National and links between, culture, society, and environmental processes. The Weather Service and computer lab and collaborative space dedicated study of Atmospheric Science involves weather and climate and how to students doing research. Students also get hands-on experience, those affect human activity and life on earth. At the University of Kansas, from forecasting and providing reports to university radio (KJHK 90.7 our department's programs work to understand human activity and the FM) and television (KUJH-TV) to research project opportunities through physical world. our department and the University of Kansas Undergraduate Research Center. Why study geography? . Because people, places, and environments interact and evolve in a changing world. From conservation to soil science to the power of Undergraduate Programs geographic information science data and more, the study of geography at the University of Kansas prepares future leaders. The study of geography Geography encompasses landscape and physical features of the planet and human activity, the environment and resources, migration, and more. Our Geography integrates information from a variety of sources to study program (http://geog.ku.edu/degrees/) has a unique cross-disciplinary the nature of culture areas, the emergence of physical and human nature with pathway options (http://geog.ku.edu/geography-pathways/) landscapes, and problems of interaction between people and the and diverse faculty (http://geog.ku.edu/faculty/) who are passionate about environment. -
Ministério Da Educação Universidade Federal Rural Da Amazônia
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso (TCC) apresentado ao curso de Graduação em Engenharia de Pesca da Universidade Federal Rural da Amazônia (UFRA) como requisito necessário para obtenção do grau de Bacharel em Engenharia de Pesca. Área de concentração: Ecologia Aquática. Orientador: Prof. Dr. rer. nat. Marko Herrmann. Coorientadora: Dra. Maria Carla de Aranzamendi. BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso apresentado à Universidade Federal Rural da Amazônia, como parte das exigências do Curso de Graduação em Engenharia de Pesca, para a obtenção do título de bacharel. Área de concentração: Ecologia Aquática. ______________________________________ Data da aprovação Banca examinadora __________________________________________ Presidente da banca Prof. Dr. Breno Gustavo Bezerra Costa Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 1 Prof. Dr. Lauro Satoru Itó Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 2 Profa. Msc. Rosália Furtado Cutrim Souza Universidade Federal Rural da Amazônia - UFRA Aos meus sobrinhos, Tháina, Kauã e Laura. “Cabe a nós criarmos crianças que não tenham preconceitos, crianças capazes de ser solidárias e capazes de sentir compaixão! Cabe a nós sermos exemplos”. AGRADECIMENTOS Certamente algumas páginas não irão descrever os meus sinceros agradecimentos a todos aqueles que cooperaram de alguma forma, para que eu pudesse realizar este sonho. -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Air Quality in North America's Most Populous City
Atmos. Chem. Phys., 7, 2447–2473, 2007 www.atmos-chem-phys.net/7/2447/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Air quality in North America’s most populous city – overview of the MCMA-2003 campaign L. T. Molina1,2, C. E. Kolb3, B. de Foy1,2,4, B. K. Lamb5, W. H. Brune6, J. L. Jimenez7,8, R. Ramos-Villegas9, J. Sarmiento9, V. H. Paramo-Figueroa9, B. Cardenas10, V. Gutierrez-Avedoy10, and M. J. Molina1,11 1Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA 2Molina Center for Energy and Environment, La Jolla, CA, USA 3Aerodyne Research, Inc., Billerica, MA, USA 4Saint Louis University, St. Louis, MO, USA 5Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA 6Department of Meteorology, Pennsylvania State University, University Park, PA, USA 7Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA 8Cooperative Institute for Research in the Environmental Sciences (CIRES), Univ. of Colorado at Boulder, Boulder, CO, USA 9Secretary of Environment, Government of the Federal District, Mexico, DF, Mexico 10National Center for Environmental Research and Training, National Institute of Ecology, Mexico, DF, Mexico 11Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, CA, USA Received: 22 February 2007 – Published in Atmos. Chem. Phys. Discuss.: 27 February 2007 Revised: 10 May 2007 – Accepted: 10 May 2007 – Published: 14 May 2007 Abstract. Exploratory field measurements in the Mexico 1 Introduction City Metropolitan Area (MCMA) in February 2002 set the stage for a major air quality field measurement campaign in 1.1 Air pollution in megacities the spring of 2003 (MCMA-2003). -
ECOLOGICAL ENERGETICS of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA
Journal of Coastal Deveolpment ISSN : 1410-5217 Volume 11, Number 2, February 2008 : 89-96 ECOLOGICAL ENERGETICS OF TROPICAL LIMPET Cellana testudinaria (Linnaeus, 1758) LIVING ON THE ROCKY SHORE OF OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Abraham Seumel Khouw Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon Indonesia Received : November, 2, 2007 ; Accepted :January,4, 2008 ABSTRACT Study on ecological energetics of tropical limpet C. testudinaria has been carried out at approximately one year from October 2001 to September 2002. Population energy budgets estimated on the assumption of steady state conditions for C. testudinaria (Linnaeus, 1758) on the rocky shore of Ohoiwait, are presented. Large difference in population structure, and hence energetics, occurred at different localities along the rocky shore. Relatively high proportions (98 %) of the assimilated energy was lost via metabolism. Assimilation efficiency is 39 %, net growth efficiency is 1.8 %, and ecological efficiency 0.3 %. Production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy component for which data on size frequency and density are available. Key words: ecological energetics, cellana testudinaria, energy components Correspondence: Phone : +6281343044295, e-mail: [email protected] INTRODUCTION Cellana testudinaria is intertidal, grazing Little has been published on the gastropod abundant on medium to very ecology of C. testudinaria. Khouw (2002) exposed rocky shores of Ohoiwait. The discussed their growth pattern and shell species shows marked zonation, with only a shape variation in relation to zonal little overlap between zones. C. testudinaria distribution. Distribution, abundance, and occurs at several spatial and temporal scales biomass were investigated by Khouw from the extreme low water spring tide (2006a) and presented evidence for the (ELWST) to the extreme high water spring effects of drying. -
Taxonomic Checklist of CITES Listed Coral Species Part II
CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc. -
Assessing and Improving Cloud-Height Based Parameterisations of Global Lightning Flash Rate, and Their Impact on Lightning-Produced Nox and Tropospheric Composition
https://doi.org/10.5194/acp-2020-885 Preprint. Discussion started: 2 October 2020 c Author(s) 2020. CC BY 4.0 License. Assessing and improving cloud-height based parameterisations of global lightning flash rate, and their impact on lightning-produced NOx and tropospheric composition 5 Ashok K. Luhar1, Ian E. Galbally1, Matthew T. Woodhouse1, and Nathan Luke Abraham2,3 1CSIRO Oceans and Atmosphere, Aspendale, 3195, Australia 2National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK 3Department of Chemistry, University of Cambridge, Cambridge, UK 10 Correspondence to: Ashok K. Luhar ([email protected]) Abstract. Although lightning-generated oxides of nitrogen (LNOx) account for only approximately 10% of the global NOx source, it has a disproportionately large impact on tropospheric photochemistry due to the conducive conditions in the tropical upper troposphere where lightning is mostly discharged. In most global composition models, lightning flash rates used to calculate LNOx are expressed in terms of convective cloud-top height via the Price and Rind (1992) (PR92) 15 parameterisations for land and ocean. We conduct a critical assessment of flash-rate parameterisations that are based on cloud-top height and validate them within the ACCESS-UKCA global chemistry-climate model using the LIS/OTD satellite data. While the PR92 parameterisation for land yields satisfactory predictions, the oceanic parameterisation underestimates the observed flash-rate density severely, yielding a global average of 0.33 flashes s-1 compared to the observed 9.16 -1 flashes s over the ocean and leading to LNOx being underestimated proportionally. We formulate new/alternative flash-rate 20 parameterisations following Boccippio’s (2002) scaling relationships between thunderstorm electrical generator power and storm geometry coupled with available data. -
JMS 70 1 031-041 Eyh003 FINAL
PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo logical events and the fossil record to determine a reference date. -
Physical Processes and Biogeochemical Engineering
Keppel Bay: physical processes and biogeochemical engineering L.C. Radke1, P.W. Ford2, I.T. Webster2, I. Atkinson1, K.Oubelkheir2 1 Geoscience Australia, Canberra, ACT 2 CSIRO Land and Water, Canberra, ACT 2006 Keppel Bay: physical processes and biogeochemical functioning Keppel Bay: physical processes and biogeochemical functioning Copyright © 2006: Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management Written by: L.C. Radke P.W. Ford I,T, Webster I. Atkinson K. Oubelkheir Published by the Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management (Coastal CRC) Indooroopilly Sciences Centre 80 Meiers Road Indooroopilly Qld 4068 Australia www.coastal.crc.org.au The text of this publication may be copied and distributed for research and educational purposes with proper acknowledgement. Disclaimer: The information contained in this report was current at the time of publication. While the report was prepared with care by the authors, the Coastal CRC and its partner organisations accept no liability for any matters arising from its contents. National Library of Australia Cataloguing-in-Publication data Keppel Bay: physical processes and biogeochemical functioning QNRM06356 ISBN 1 921017759 (print and online) Keppel Bay: physical processes and biogeochemical functioning Acknowledgements The work described in this report was funded by the CRC for Coastal Zone, Estuary and Waterway Management and relied on extensive inputs of data and ideas from members of other components of the Fitzroy Contaminants subproject (described in CRC Reports 34 to 37). We acknowledge and thank the following other people for their various contributions to this work: Kirrod Broadhurst, Graham Wassell, Paul Ridett and David Munro, the captain and deckhands of the Rum Rambler, managed navigation, shared local knowledge and provided assistance during the sampling. -
Atmospheric Science Brochure
Welcome from the Atmospheric Science Program! FForor MMoreore IInformationnformation Our program is led by seven faculty members Professor Clark Evans with expertise in atmospheric dynamics, weather Atmospheric Science Program Coordinator analysis and forecasting, cloud physics, air pollution meteorology, tropical and mesoscale meteorology, P. O. Box 413, Milwaukee, WI 53201 and chaotic systems. (414) 229-5116 [email protected] Your professional development is our top priority! We offer lots of faculty contact, opportunities for hands-on research, excellent computational facilities, and an array of courses to prepare you for your career. Learn more about the Atmospheric Science Study Abroad Visit us Online Atmospheric Science UWM offers the world’s www.math.uwm.edu/atmo fi rst faculty-led Major J study-abroad www.facebook.com/UWMAtmoSci program in www.innovativeweather.com Atmospheric Science. In this course, you can explore the effects of acid rain on Mexico’s cultural heritage sites. Atmospheric Science Major at the University of Wisconsin – Milwaukee The study of weather, climate, and their impacts on both Earth and human activities AAtmospherictmospheric SSciencecience CCareersareers PPreparatoryreparatory CCreditsredits BBeyondeyond tthehe CClassroomlassroom A career in atmospheric science is very rewarding • Math 231: Calculus and Analytic Geometry I Atmospheric Science because of the impact weather and climate have on • Math 232: Calculus and Analytic Geometry I INNNOVANOVATTIVEIVE students can work everyday life. You will fi nd atmospheric scientists • Math 233: Calculus and Analytic Geometry III WEEATHERATHER with real clients in many different roles: nearly 36% work in the • Math 234: Linear Algebra/Differential Equations providing forecasts, private sector; 33% for governmental agencies; 24% • Math 320: Intro to Differential Equations risk assessments and other weather-related services at educational institutions or laboratories; and 7% in • Physics 209/214: Physics I with Lab to the community and business partners across the media. -
Scleractinian Reef Corals: Identification Notes
SCLERACTINIAN REEF CORALS: IDENTIFICATION NOTES By JACKIE WOLSTENHOLME James Cook University AUGUST 2004 DOI: 10.13140/RG.2.2.24656.51205 http://dx.doi.org/10.13140/RG.2.2.24656.51205 Scleractinian Reef Corals: Identification Notes by Jackie Wolstenholme is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................ i INTRODUCTION .................................................................................................................................................. 1 ABBREVIATIONS AND DEFINITIONS ............................................................................................................. 2 FAMILY ACROPORIDAE.................................................................................................................................... 3 Montipora ........................................................................................................................................................... 3 Massive/thick plates/encrusting & tuberculae/papillae ................................................................................... 3 Montipora monasteriata .............................................................................................................................. 3 Massive/thick plates/encrusting & papillae ................................................................................................... -
Spatial Trends in United States Tornado Frequency
www.nature.com/npjclimatsci ARTICLE OPEN Spatial trends in United States tornado frequency Vittorio A. Gensini 1 and Harold E. Brooks2 Severe thunderstorms accompanied by tornadoes, hail, and damaging winds cause an average of 5.4 billion dollars of damage each year across the United States, and 10 billion-dollar events are no longer uncommon. This overall economic and casualty risk—with over 600 severe thunderstorm related deaths in 2011—has prompted public and scientific inquiries about the impact of climate change on tornadoes. We show that national annual frequencies of tornado reports have remained relatively constant, but significant spatially-varying temporal trends in tornado frequency have occurred since 1979. Negative tendencies of tornado occurrence have been noted in portions of the central and southern Great Plains, while robust positive trends have been documented in portions of the Midwest and Southeast United States. In addition, the significant tornado parameter is used as an environmental covariate to increase confidence in the tornado report results. npj Climate and Atmospheric Science (2018) 1:38 ; doi:10.1038/s41612-018-0048-2 INTRODUCTION A derived covariate, such as STP, is complementary to tornado Recent trends in global and United States temperature have reports for climatological studies. For example, it has been shown provoked questions about the impact on frequency, intensity, that variables like storm relative helicity and convective precipita- timing, and location of tornadoes. When removing many non- tion adequately represent United States monthly tornado 16 meteorological factors, it is shown that the annual frequency of frequency. Reports are subject to a human reporting process, United States tornadoes through the most reliable portions of the whereas environmental covariates allow for an objective model- historical record has remained relatively constant.1–4 The most derived climatology.