Local Cohomology
LOCAL COHOMOLOGY by Mel Hochster These are lecture notes based on seminars and courses given by the author at the Univer- sity of Michigan over a period of years. This particular version is intended for Mathematics 615, Winter 2011. The objective is to give a treatment of local cohomology that is quite elementary, assuming, for the most part, only a modest knowledge of commutative alge- bra. There are some sections where further prerequisites, usually from algebraic geometry, are assumed, but these may be omitted by the reader who does not have the necessary background. This version contains the first twenty sections, and is tentative. There will be extensive revisions and additions. The final version will also have Appendices dealing with some prerequisites. ||||||||| Throughout, all given rings are assumed to be commutative, associative, with identity, and all modules are assumed to be unital. By a local ring (R; m; K) we mean a Noetherian ring R with a unique maximal ideal m and residue field K = R=m. Topics to be covered include the study of injective modules over Noetherian rings, Matlis duality (over a complete local ring, the category of modules with ACC is anti- equivalent to the category of modules with DCC), the notion of depth, Cohen-Macaulay and Gorenstein rings, canonical modules and local duality, the Hartshorne-Lichtenbaum vanishing theorem, and the applications of D-modules (in equal characteristic 0) and F- modules (in characteristic p > 0) to study local cohomology of regular rings. The tie-in with injective modules arises, in part, because the local cohomology of a regular local rings with support in the maximal ideal is the same as the injective huk of the residue class field.
[Show full text]