ALGEBRAIC NUMBER THEORY Contents Introduction

Total Page:16

File Type:pdf, Size:1020Kb

ALGEBRAIC NUMBER THEORY Contents Introduction ALGEBRAIC NUMBER THEORY J.S. MILNE Abstract. These are the notes for a course taught at the University of Michigan in F92 as Math 676. They are available at www.math.lsa.umich.edu/∼jmilne/. Please send comments and corrections to me at [email protected]. v2.01 (August 14, 1996.) First version on the web. v2.10 (August 31, 1998.) Fixed many minor errors; added exercises and index. Contents Introduction..................................................................1 The ring of integers 1; Factorization 2; Units 4; Applications 5; A brief history of numbers 6; References. 7. 1. Preliminaries from Commutative Algebra ............................10 Basic definitions 10; Noetherian rings 10; Local rings 12; Rings of fractions 12; The Chinese remainder theorem 14; Review of tensor products 15; Extension of scalars 17; Tensor products of algebras 17; Tensor products of fields 17. 2. Rings of Integers ........................................................19 Symmetric polynomials 19; Integral elements 20; Review of bases of A- modules 25; Review of norms and traces 25; Review of bilinear forms 26; Discriminants 26; Rings of integers are finitely generated 28; Finding the ring of integers 30; Algorithms for finding the ring of integers 33. 3. Dedekind Domains; Factorization .....................................37 Discrete valuation rings 37; Dedekind domains 38; Unique factorization 39; The ideal class group 43; Discrete valuations 46; Integral closures of Dedekind domains 47; Modules over Dedekind domains (sketch). 48; Fac- torization in extensions 49; The primes that ramify 50; Finding factoriza- tions 53; Examples of factorizations 54; Eisenstein extensions 56. 4. The Finiteness of the Class Number ..................................58 Norms of ideals 58; Statement of the main theorem and its consequences 59; Lattices 62; Some calculus 67; Finiteness of the class number 69; Binary quadratic forms 71; 5. The Unit Theorem ......................................................73 Statement of the theorem 73; Proof that UK is finitely generated 74; Com- putation of the rank 75; S-units 77; Finding fundamental units in real c 1996, 1998, J.S. Milne. You may make one copy of these notes for your own personal use. i 0J.S.MILNE quadratic fields 77; Units in cubic fields with negative discriminant 78; Finding µ(K) 80; Finding a system of fundamental units 80; Regulators 80; 6. Cyclotomic Extensions; Fermat’s Last Theorem......................82 The basic results 82; Class numbers of cyclotomic fields 87; Units in cyclo- tomic fields 87; Fermat’s last theorem 88; 7. Valuations; Local Fields ................................................91 Valuations 91; Nonarchimedean valuations 91; Equivalent valuations 93; Properties of discrete valuations 95; Complete list of valuations for Q 95; The primes of a number field 97; Notations 97; Completions 98; Com- pletions in the nonarchimedean case 99; Newton’s lemma 102; Extensions of nonarchimedean valuations 105; Newton’s polygon 107; Locally compact fields 108; Unramified extensions of a local field 109; Totally ramified exten- sions of K 111; Ramification groups 112; Krasner’s lemma and applications 113; A Brief Introduction to PARI 115. 8. Global Fields ...........................................................116 Extending valuations 116; The product formula 118; Decomposition groups 119; The Frobenius element 121; Examples 122; Application: the quadratic reciprocity law 123; Computing Galois groups (the hard way) 123; Comput- ing Galois groups (the easy way) 124; Cubic polynomials 126; Chebotarev density theorem 126; Applications of the Chebotarev density theorem 128; Topics not covered 130; More algorithms 130; The Hasse principle for qua- dratic forms 130; Algebraic function fields 130. Exercises..................................................................132. It is standard to use Gothic (fraktur) letters for ideals: abcmnpqABCMNPQ abcmnpqABCMNP Q I use the following notations: X ≈ YXand Y are isomorphic; ∼ X and Y are canonically isomorphic X = Y or there is a given or unique isomorphism; X =df YXis defined to be Y ,orequalsY by definition; X ⊂ YXis a subset of Y (not necessarily proper). Introduction 1 Introduction An algebraic number field is a finite extension of Q;analgebraic number is an element of an algebraic number field. Algebraic number theory studies the arithmetic of algebraic number fields — the ring of integers in the number field, the ideals in the ring of integers, the units, the extent to which the ring of integers fails to be have unique factorization, and so on. One important tool for this is “localization”, in which we complete the number field relative to a metric attached to a prime ideal of the number field. The completed field is called a local field — its arithmetic is much simpler than that of the number field, and sometimes we can answer questions by first solving them locally, that is, in the local fields. An abelian extension of a field is a Galois extension of the field with abelian Galois group. Global class field theory classifies the abelian extensions of a number field K in terms of the arithmetic of K; local class field theory does the same for local fields. This course is concerned with algebraic number theory. Its sequel is on class field theory (see my notes CFT). I now give a quick sketch of what the course will cover. The fundamental theorem of arithmetic says that integers can be uniquely factored into products of prime powers: an m =0in Z can be written in the form, r1 ··· rn ± m = up1 pn ,u= 1,pi prime number, ri > 0, and this factorization is essentially unique. Consider more generally an integral domain A.Anelementa ∈ A is said to be a unit if it has an inverse in A;IwriteA× for the multiplicative group of units in A. An element p of A is said to prime if it is neither zero nor a unit, and if p|ab ⇒ p|a or p|b. If A is a principal ideal domain, then every nonzero nonunit element a of A can be written in the form, r1 ··· rn a = p1 pn ,pi prime element, ri > 0, and the factorization is unique up to order and replacing each pi with an associate, i.e., with its product with a unit. Our first task will be to discover to what extent unique factorization holds, or fails to hold, in number fields. Three problems present themselves. First, factorization in a field only makes sense with respect to a subring, and so we must define the “ring of integers” OK in our number field K. Secondly, since unique factorization will in general fail, we shall need to find a way of measuring by how much it fails. Finally, since factorization is only considered up to units, in order to fully understand the arithmetic of K, we need to understand the structure of the group of units UK in OK. Resolving these three problems will occupy the first five sections of the course. The ring of integers. Let K be an algebraic number field. Because K is of finite degree over Q, every element α of K is a root of a monic polynomial n n−1 f(X)=X + a1X + ···+ a0,ai ∈ Q. 2 Introduction If α is a root of a monic polynomial with integer coefficients, then α is called an algebraic integer of K. We shall see that the algebraic integers form a subring OK of K. The criterion as stated is difficult to apply. We shall see that to prove that α is an algebraic integer, it suffices to check that its minimum polynomial (relative to Q) has integer coefficients. Consider for example the field K√ = Q[ d], where d is a square-free integer. The minimum polynomial of α = a + b d, b =0, a, b ∈ Q,is √ √ (X − (a + b d))(X − (a − b d)) = X2 − 2aX +(a2 − b2d). Thus α is an algebraic integer if and only if 2a ∈ Z,a2 − b2d ∈ Z. From this it follows easily that √ √ OK = Z[ d]={m + n d | m, n ∈ Z} if d ≡ 2, 3mod4, and √ 1+ d OK = {m + n | m, n ∈ Z} if d ≡ 1mod4, 2 √ i.e., OK is the set of sums m + n d with m and n either both integers or both half-integers. th Let ζd be a primitive d root of 1, for example, ζd =exp(2πi/d), and let K = Q[ζd]. Then we shall see that O Z { i | ∈ Z} K = [ζd]= miζd mi . as one would hope. Factorization. An element p of an integral domain A is said to be irreducible if it is neither zero nor a unit, and can’t be written as a product of two nonunits. For example, a prime element is (obviously) irreducible. A ring A is a unique factorization domain if every nonzero nonunit element of A can be expressed as a product of irreducible elements in essentially one way. Is OK a unique factorization domain? No, not in general! Infact,weshallseethateachelementofOK can be written as a product of irreducible elements (this is true for all Noetherian rings) — it is the uniqueness that fails. √ For example, in Z[ −5] we have √ √ 6=2· 3=(1+ −5)(1 − −5). √ √ Toseethat2,3,1+ −5, 1 − −5 are irreducible, and no two are associates, we use the norm map √ √ Nm : Q[ −5] → Q,a+ b −5 → a2 +5b2. For α ∈OK,wehave Nm(α)=1 ⇐⇒ αα¯ =1 ⇐⇒ α is a unit. (*) Introduction 3 √ √ If 1 + −5=αβ,thenNm(αβ)=Nm(1+ −5) = 6. Thus Nm(α)=1, 2, 3, or 6. In the first case, α is a unit, the second and third cases don’t occur,√ and in the fourth case β is a unit. A similar argument shows that 2, 3, and 1 − −5 are irreducible. Next note that√ (*) implies that√ associates have the same norm, and so it remains to show that 1 + −5and1− −5 are not associates, but √ √ √ 1+ −5=(a + b −5)(1 − −5) has no solution with a, b ∈ Z.
Recommended publications
  • Multiplicative Theory of Ideals This Is Volume 43 in PURE and APPLIED MATHEMATICS a Series of Monographs and Textbooks Editors: PAULA
    Multiplicative Theory of Ideals This is Volume 43 in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: PAULA. SMITHAND SAMUELEILENBERG A complete list of titles in this series appears at the end of this volume MULTIPLICATIVE THEORY OF IDEALS MAX D. LARSEN / PAUL J. McCARTHY University of Nebraska University of Kansas Lincoln, Nebraska Lawrence, Kansas @ A CADEM I C P RE S S New York and London 1971 COPYRIGHT 0 1971, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. Berkeley Square House, London WlX 6BA LIBRARY OF CONGRESS CATALOG CARD NUMBER: 72-137621 AMS (MOS)1970 Subject Classification 13F05; 13A05,13B20, 13C15,13E05,13F20 PRINTED IN THE UNITED STATES OF AMERICA To Lillie and Jean This Page Intentionally Left Blank Contents Preface xi ... Prerequisites Xlll Chapter I. Modules 1 Rings and Modules 1 2 Chain Conditions 8 3 Direct Sums 12 4 Tensor Products 15 5 Flat Modules 21 Exercises 27 Chapter II. Primary Decompositions and Noetherian Rings 1 Operations on Ideals and Submodules 36 2 Primary Submodules 39 3 Noetherian Rings 44 4 Uniqueness Results for Primary Decompositions 48 Exercises 52 Chapter Ill. Rings and Modules of Quotients 1 Definition 61 2 Extension and Contraction of Ideals 66 3 Properties of Rings of Quotients 71 Exercises 74 Vii Vlll CONTENTS Chapter IV.
    [Show full text]
  • 8 Complete Fields and Valuation Rings
    18.785 Number theory I Fall 2016 Lecture #8 10/04/2016 8 Complete fields and valuation rings In order to make further progress in our investigation of finite extensions L=K of the fraction field K of a Dedekind domain A, and in particular, to determine the primes p of K that ramify in L, we introduce a new tool that will allows us to \localize" fields. We have already seen how useful it can be to localize the ring A at a prime ideal p. This process transforms A into a discrete valuation ring Ap; the DVR Ap is a principal ideal domain and has exactly one nonzero prime ideal, which makes it much easier to study than A. By Proposition 2.7, the localizations of A at its prime ideals p collectively determine the ring A. Localizing A does not change its fraction field K. However, there is an operation we can perform on K that is analogous to localizing A: we can construct the completion of K with respect to one of its absolute values. When K is a global field, this process yields a local field (a term we will define in the next lecture), and we can recover essentially everything we might want to know about K by studying its completions. At first glance taking completions might seem to make things more complicated, but as with localization, it actually simplifies matters considerably. For those who have not seen this construction before, we briefly review some background material on completions, topological rings, and inverse limits.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • EVERY ABELIAN GROUP IS the CLASS GROUP of a SIMPLE DEDEKIND DOMAIN 2 Class Group
    EVERY ABELIAN GROUP IS THE CLASS GROUP OF A SIMPLE DEDEKIND DOMAIN DANIEL SMERTNIG Abstract. A classical result of Claborn states that every abelian group is the class group of a commutative Dedekind domain. Among noncommutative Dedekind prime rings, apart from PI rings, the simple Dedekind domains form a second important class. We show that every abelian group is the class group of a noncommutative simple Dedekind domain. This solves an open problem stated by Levy and Robson in their recent monograph on hereditary Noetherian prime rings. 1. Introduction Throughout the paper, a domain is a not necessarily commutative unital ring in which the zero element is the unique zero divisor. In [Cla66], Claborn showed that every abelian group G is the class group of a commutative Dedekind domain. An exposition is contained in [Fos73, Chapter III §14]. Similar existence results, yield- ing commutative Dedekind domains which are more geometric, respectively num- ber theoretic, in nature, were obtained by Leedham-Green in [LG72] and Rosen in [Ros73, Ros76]. Recently, Clark in [Cla09] showed that every abelian group is the class group of an elliptic commutative Dedekind domain, and that this domain can be chosen to be the integral closure of a PID in a quadratic field extension. See Clark’s article for an overview of his and earlier results. In commutative mul- tiplicative ideal theory also the distribution of nonzero prime ideals within the ideal classes plays an important role. For an overview of realization results in this direction see [GHK06, Chapter 3.7c]. A ring R is a Dedekind prime ring if every nonzero submodule of a (left or right) progenerator is a progenerator (see [MR01, Chapter 5]).
    [Show full text]
  • Determining Large Groups and Varieties from Small Subgroups and Subvarieties
    Determining large groups and varieties from small subgroups and subvarieties This course will consist of two parts with the common theme of analyzing a geometric object via geometric sub-objects which are `small' in an appropriate sense. In the first half of the course, we will begin by describing the work on H. W. Lenstra, Jr., on finding generators for the unit groups of subrings of number fields. Lenstra discovered that from the point of view of computational complexity, it is advantageous to first consider the units of the ring of S-integers of L for some moderately large finite set of places S. This amounts to allowing denominators which only involve a prescribed finite set of primes. We will de- velop a generalization of Lenstra's method which applies to find generators of small height for the S-integral points of certain algebraic groups G defined over number fields. We will focus on G which are compact forms of GLd for d ≥ 1. In the second half of the course, we will turn to smooth projective surfaces defined by arithmetic lattices. These are Shimura varieties of complex dimension 2. We will try to generate subgroups of finite index in the fundamental groups of these surfaces by the fundamental groups of finite unions of totally geodesic projective curves on them, that is, via immersed Shimura curves. In both settings, the groups we will study are S-arithmetic lattices in a prod- uct of Lie groups over local fields. We will use the structure of our generating sets to consider several open problems about the geometry, group theory, and arithmetic of these lattices.
    [Show full text]
  • The Structure Theory of Complete Local Rings
    The structure theory of complete local rings Introduction In the study of commutative Noetherian rings, localization at a prime followed by com- pletion at the resulting maximal ideal is a way of life. Many problems, even some that seem \global," can be attacked by first reducing to the local case and then to the complete case. Complete local rings turn out to have extremely good behavior in many respects. A key ingredient in this type of reduction is that when R is local, Rb is local and faithfully flat over R. We shall study the structure of complete local rings. A complete local ring that contains a field always contains a field that maps onto its residue class field: thus, if (R; m; K) contains a field, it contains a field K0 such that the composite map K0 ⊆ R R=m = K is an isomorphism. Then R = K0 ⊕K0 m, and we may identify K with K0. Such a field K0 is called a coefficient field for R. The choice of a coefficient field K0 is not unique in general, although in positive prime characteristic p it is unique if K is perfect, which is a bit surprising. The existence of a coefficient field is a rather hard theorem. Once it is known, one can show that every complete local ring that contains a field is a homomorphic image of a formal power series ring over a field. It is also a module-finite extension of a formal power series ring over a field. This situation is analogous to what is true for finitely generated algebras over a field, where one can make the same statements using polynomial rings instead of formal power series rings.
    [Show full text]
  • Open Problems
    Open Problems 1. Does the lower radical construction for `-rings stop at the first infinite ordinal (Theorems 3.2.5 and 3.2.8)? This is the case for rings; see [ADS]. 2. If P is a radical class of `-rings and A is an `-ideal of R, is P(A) an `-ideal of R (Theorem 3.2.16 and Exercises 3.2.24 and 3.2.25)? 3. (Diem [DI]) Is an sp-`-prime `-ring an `-domain (Theorem 3.7.3)? 4. If R is a torsion-free `-prime `-algebra over the totally ordered domain C and p(x) 2C[x]nC with p0(1) > 0 in C and p(a) ¸ 0 for every a 2 R, is R an `-domain (Theorems 3.8.3 and 3.8.4)? 5. Does each f -algebra over a commutative directed po-unital po-ring C whose left and right annihilator ideals vanish have a unique tight C-unital cover (Theorems 3.4.5, 3.4.11, and 3.4.12 and Exercises 3.4.16 and 3.4.18)? 6. Can an f -ring contain a principal `-idempotent `-ideal that is not generated by an upperpotent element (Theorem 3.4.4 and Exercise 3.4.15)? 7. Is each C-unital cover of a C-unitable (totally ordered) f -algebra (totally or- dered) tight (Theorem 3.4.10)? 8. Is an archimedean `-group a nonsingular module over its f -ring of f -endomorphisms (Exercise 4.3.56)? 9. If an archimedean `-group is a finitely generated module over its ring of f -endomorphisms, is it a cyclic module (Exercise 3.6.20)? 10.
    [Show full text]
  • Quadratic Forms, Lattices, and Ideal Classes
    Quadratic forms, lattices, and ideal classes Katherine E. Stange March 1, 2021 1 Introduction These notes are meant to be a self-contained, modern, simple and concise treat- ment of the very classical correspondence between quadratic forms and ideal classes. In my personal mental landscape, this correspondence is most naturally mediated by the study of complex lattices. I think taking this perspective breaks the equivalence between forms and ideal classes into discrete steps each of which is satisfyingly inevitable. These notes follow no particular treatment from the literature. But it may perhaps be more accurate to say that they follow all of them, because I am repeating a story so well-worn as to be pervasive in modern number theory, and nowdays absorbed osmotically. These notes require a familiarity with the basic number theory of quadratic fields, including the ring of integers, ideal class group, and discriminant. I leave out some details that can easily be verified by the reader. A much fuller treatment can be found in Cox's book Primes of the form x2 + ny2. 2 Moduli of lattices We introduce the upper half plane and show that, under the quotient by a natural SL(2; Z) action, it can be interpreted as the moduli space of complex lattices. The upper half plane is defined as the `upper' half of the complex plane, namely h = fx + iy : y > 0g ⊆ C: If τ 2 h, we interpret it as a complex lattice Λτ := Z+τZ ⊆ C. Two complex lattices Λ and Λ0 are said to be homothetic if one is obtained from the other by scaling by a complex number (geometrically, rotation and dilation).
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • An Introduction to Skolem's P-Adic Method for Solving Diophantine
    An introduction to Skolem's p-adic method for solving Diophantine equations Josha Box July 3, 2014 Bachelor thesis Supervisor: dr. Sander Dahmen Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam Abstract In this thesis, an introduction to Skolem's p-adic method for solving Diophantine equa- tions is given. The main theorems that are proven give explicit algorithms for computing bounds for the amount of integer solutions of special Diophantine equations of the kind f(x; y) = 1, where f 2 Z[x; y] is an irreducible form of degree 3 or 4 such that the ring of integers of the associated number field has one fundamental unit. In the first chapter, an introduction to algebraic number theory is presented, which includes Minkovski's theorem and Dirichlet's unit theorem. An introduction to p-adic numbers is given in the second chapter, ending with the proof of the p-adic Weierstrass preparation theorem. The theory of the first two chapters is then used to apply Skolem's method in Chapter 3. Title: An introduction to Skolem's p-adic method for solving Diophantine equations Author: Josha Box, [email protected], 10206140 Supervisor: dr. Sander Dahmen Second grader: Prof. dr. Jan de Boer Date: July 3, 2014 Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Science Park 904, 1098 XH Amsterdam http://www.science.uva.nl/math 3 Contents Introduction 6 Motivations . .7 1 Number theory 8 1.1 Prerequisite knowledge . .8 1.2 Algebraic numbers . 10 1.3 Unique factorization . 15 1.4 A geometrical approach to number theory .
    [Show full text]
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • The Quotient Field of an Intersection of Integral Domains
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 70, 238-249 (1981) The Quotient Field of an Intersection of Integral Domains ROBERT GILMER* Department of Mathematics, Florida State University, Tallahassee, Florida 32306 AND WILLIAM HEINZER' Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 Communicated by J. DieudonnP Received August 10, 1980 INTRODUCTION If K is a field and 9 = {DA} is a family of integral domains with quotient field K, then it is known that the family 9 may possess the following “bad” properties with respect to intersection: (1) There may exist a finite subset {Di}rzl of 9 such that nl= I Di does not have quotient field K; (2) for some D, in 9 and some subfield E of K, the quotient field of D, n E may not be E. In this paper we examine more closely conditions under which (1) or (2) occurs. In Section 1, we work in the following setting: we fix a subfield F of K and an integral domain J with quotient field F, and consider the family 9 of K-overrings’ of J with quotient field K. We then ask for conditions under which 9 is closed under intersection, or finite intersection, or under which D n E has quotient field E for each D in 9 and each subfield E of K * The first author received support from NSF Grant MCS 7903123 during the writing of this paper. ‘The second author received partial support from NSF Grant MCS 7800798 during the writing of this paper.
    [Show full text]