Reproductive and Larval Biology of the Northeastern Pacific
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discovery of Bilaterian-Type Through-Guts in Cloudinomorphs from the Terminal Ediacaran Period
ARTICLE https://doi.org/10.1038/s41467-019-13882-z OPEN Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period James D. Schiffbauer 1,2*, Tara Selly 1,2*, Sarah M. Jacquet 1, Rachel A. Merz3, Lyle L. Nelson4, Michael A. Strange5, Yaoping Cai6 & Emily F. Smith 4 The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving 1234567890():,; their phylogenetic identity has remained a point of contention. The root of the problem is a lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the only available source of information—their external tubes. Here, using tomographic analyses of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recog- nizable soft tissues within their external tubes. Although alternative interpretations are plausible, these internal cylindrical structures may be most appropriately interpreted as digestive tracts, which would be, to date, the earliest-known occurrence of such features in the fossil record. If this interpretation is correct, their nature as one-way through-guts not only provides evidence for establishing these fossils as definitive bilaterians but also has implications for the long-debated phylogenetic position of the broader cloudinomorphs. 1 Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA. 2 X-ray Microanalysis Core, University of Missouri, Columbia, MO 65211, USA. 3 Biology Department, Swarthmore College, Swarthmore, PA 19081, USA. 4 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA. -
Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism
Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism Ryutaro Goto1,2*, Tomoko Okamoto2, Hiroshi Ishikawa3, Yoichi Hamamura4, Makoto Kato2 1 Department of Marine Ecosystem Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan, 2 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan, 3 Uwajima, Ehime, Japan, 4 Kure, Hiroshima, Japan Abstract The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid- like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI) of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bone- lliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs). Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms. -
FROM ROCAS ATOLL, BRAZIL, with the DESCRIPTION of a NEW SPECIES 1 (With 4 Figures)
Arquivos do Museu Nacional, Rio de Janeiro, v.65, n.3, p.363-368, jul./set.2007 ISSN 0365-4508 SABELLIDAE LATREILLE, 1825 (ANNELIDA, POLYCHAETA) FROM ROCAS ATOLL, BRAZIL, WITH THE DESCRIPTION OF A NEW SPECIES 1 (With 4 figures) ELISA MARIA COSTA-PAIVA 2, 3 PAULO CESAR PAIVA 2 ABSTRACT: Three species of sabellids belonging to the genera Bispira and Notaulax were found in Rocas Atoll, Rio Grande do Norte State (RN), Brazil (3 o51’30”S and 33 o49’29”W). Among them, Bispira klautae is a new species. The description of this new species and a redescription of B. melanostigma and N. occidentalis are provided. Key words: Polychaeta. Sabellidae. Rocas Atoll. Brazil. New species. RESUMO: Sabellidae Latreille, 1825 (Annelida, Polychaeta) do Atol das Rocas, Brasil, com a descrição de uma nova espécie. Três espécies de sabelídeos pertencentes aos gêneros Bispira e Notaulax foram encontrados no Atol das Rocas, Rio Grande do Norte (RN), Brasil (3 o51’30”S e 33 o49’29”W). Dentre estas, uma nova espécie: Bispira klautae . Além da descrição desta nova espécie, é fornecida a redescrição de B. melanostigma e N. occidentalis. Palavras-chave: Polychaeta. Sabellidae. Atol das Rocas. Brasil. Espécie nova. INTRODUCTION associated with hard surfaces and soft sediments for all latitudes from intertidal areas to shelf depths After the original description, the first significant (F AUCHALD , 1977; R OUSE & P LEIJEL , 2001; G IANGRANDE subdivision of the Sabellidae was carried by R IOJA & L ICCIANO , 2004). (1923) who divided the family in three subfamilies: The major characteristics used in sabellids taxonomy Myxicolinae, Fabriciinae, and Sabellinae, based include: (a) the presence or absence of companion largely on setal characters. -
H1.1 Open Water
PAGE .............................................................. 392 ▼ H1.1 OPEN WATER The open-water offshore habitat covers an area of by which solar energy enters the marine ecosystem, Nova Scotia larger than the land mass, and includes similar to the layer of plants on land. The ocean H1.1 Open Water salt water in inlets, bays and estuaries. The water waters are distinctive in having fostered the origins and the organisms it supports are the primary means of life on the planet. Plate H1.1.1: Right Whale, north of Brier Island (Unit 912). Photo: BIOS Habitats Natural History of Nova Scotia, Volume I © Nova Scotia Museum of Natural History .............................................................. PAGE 393 ▼ FORMATION PLANTS Oceans are formed as part of major geological events. The plants of the open ocean are almost entirely Nova Scotia’s open-ocean habitats are part of the microscopic algae, collectively known as phyto- Atlantic Ocean, which opened during the Jurassic plankton. Many different species occur, including Period and has been in continuous existence ever representatives of the prochlorophytes (blue-green since. The quality and depth of the water column algae—evolutionary intermediates between bacteria have fluctuated in relation to post-glacial climatic and algae), diatoms, dinoflagellates, chrysomonads, conditions. cryptomonads, minute flagellates and unicellular reproductive stages of macroscopic algae. Phyto- H1.1 PHYSICAL ASPECTS plankton are often grouped in size classes: Open Water 1. Water conditions, such as salinity, temperature, macroplankton: 200–2000 micrometres, includes ice-formation, turbidity, light penetration, tides larger diatoms. and currents, are extremely variable in the microplankton: 20–200 micrometres, includes waters offshore. most diatoms. 2. Air-water interaction, surface-water turbulence nanoplankton: 2–20 micrometres, includes determines the level of wave and gas exchange. -
Full Text in Pdf Format
Vol. 9: 57–71, 2017 AQUACULTURE ENVIRONMENT INTERACTIONS Published February 8§ doi: 10.3354/aei00215 Aquacult Environ Interact OPEN ACCESS Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences A. M. Walls1,*, M. D. Edwards1, L. B. Firth2, M. P. Johnson1 1Irish Seaweed Research Group, Ryan Institute, National University of Ireland, Galway, Ireland 2School of Geography, Earth & Environmental Science, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK ABSTRACT: There has been an increase in commercial-scale kelp cultivation in Europe, with fouling of cultivated kelp fronds presenting a major challenge to the growth and development of the industry. The presence of epibionts decreases productivity and impacts the commercial value of the crop. Several abiotic and biotic factors may influence the occurrence and degree of fouling of wild and cultivated fronds. Using a commercial kelp farm on the SW coast of Ireland, we studied the development of fouling communities on cultivated Alaria esculenta fronds over 2 typical grow- ing seasons. The predictability of community development was assessed by comparing mean occurrence-day. Hypotheses that depth, kelp biomass, position within the farm and the hydrody- namic environment affect the fouling communities were tested using species richness and com- munity composition. Artificial kelp mimics were used to test whether local frond density could affect the fouling communities. Species richness increased over time during both years, and spe- cies composition was consistent over years with early successional communities converging into later communities (no significant differences between June 2014 and June 2015 communities, ANOSIM; R = −0.184, p > 0.05). -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
The Trace Fossil Diopatrichnus Santamariensis Nov. Isp. – a Shell Armored Tube from Pliocene Sediments of Santa Maria Island, Azores (NE Atlantic Ocean)
Uchman, A., Quintino, V., Rodrigues, A. M., Johnson, M. E., Melo, C. S., Cordeiro, R., Ramalho, R. S., & Ávila, S. P. (2017). The trace fossil Diopatrichnus santamariensis nov. isp. – a shell armored tube from Pliocene sediments of Santa Maria Island, Azores (NE Atlantic Ocean). Geobios, 50(5-6), 459-469. https://doi.org/10.1016/j.geobios.2017.09.002 Peer reviewed version License (if available): CC BY-NC-ND Link to published version (if available): 10.1016/j.geobios.2017.09.002 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ELSEVIER at https://www.sciencedirect.com/science/article/pii/S0016699516301292 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Accepted Manuscript Title: The trace fossil Diopatrichnus santamariensis nov. isp. – a shell armored tube from Pliocene sediments of Santa Maria Island, Azores (NE Atlantic Ocean) Author: Alfred Uchman Victor Quintino Ana Maria Rodrigues Markes E. Johnson Carlos Melo Ricardo Cordeiro Ricardo S. Ramalho Sergio´ P. Avila´ PII: S0016-6995(16)30129-2 DOI: https://doi.org/doi:10.1016/j.geobios.2017.09.002 Reference: GEOBIO 794 To appear in: Geobios Received date: 23-12-2016 Accepted date: 29-9-2017 Please cite this article as: Uchman, A., Quintino, V., Rodrigues, A.M., Johnson, M.E., Melo, C., Cordeiro, R., Ramalho, R.S., Avila,´ S.P.,The trace fossil Diopatrichnus santamariensis nov. -
A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project .............................................................................................. -
(Polychaeta) Borings in Paraspirifer Bownockeri (Brachiopoda: Devonian)1
114 A. E. ANNALA AND L. A. KAPUSTKA Vol. 83 Copyright © 1983 Ohio Acad. Sci. 003O-O95O/83/0003-O114 $2.00/0 VERMIFORICHNUS (POLYCHAETA) BORINGS IN PARASPIRIFER BOWNOCKERI (BRACHIOPODA: DEVONIAN)1 R. D. HOARE and R. L. WALDEN, Department of Geology, Bowling Green State University, Bowling Green, OH 43403 ABSTRACT. Shells of Paraspirifer bownockeri (Stewart) from the Silica Formation, Middle Devonian of northwestern Ohio, commonly contain numerous borings of a polychaete worm forming the endolithic trace fossil Vermiforichnus clarki Cameron (1969a) which can be exposed by acidizing the specimens. The borings are most abundant on the brachial valve, and their surface openings tend to be concentrated along major growth lines thence extending dominantly in the general direction of the beaks of the valves. In- festations of the polychaete occurred at 2 different time intervals as indicated by the spac- ing of the borings on 2 major growth lines with renewed shell growth between them. Growth of the host was severely reduced immediately following the infestation and in some areas damage to the mantle caused deformation in the shell of the host. OHIO J. SCI. 83 (3): 114-119, 1983 INTRODUCTION (1932) by Hoare and Steller (1967) (fig. 1), Previous interpretations of the larger as boring sponges by Kesling and Chilman borings commonly seen in the brachiopod (1975) and as "Clionoides" sp. by Steller Paraspirifer bownockeri (Stewart) from the (1965), Kesling et al. (1980) and Sparks Silica Formation in northwestern Ohio et al. (1980). These interpretations were have been alluded to as sponge borings, based on the external configuration of the Clionoides thomasi Fenton and Fenton surface opening of the boring only. -
(OWENIIDAE, ANNELIDA POLYCHAETA) from the YELLOW SEA and EVIDENCE THAT OWENIA FUSIFORMIS IS NOT a COSMOPOLITAN SPECIES B Koh, M Bhaud
DESCRIPTION OF OWENIA GOMSONI N. SP. (OWENIIDAE, ANNELIDA POLYCHAETA) FROM THE YELLOW SEA AND EVIDENCE THAT OWENIA FUSIFORMIS IS NOT A COSMOPOLITAN SPECIES B Koh, M Bhaud To cite this version: B Koh, M Bhaud. DESCRIPTION OF OWENIA GOMSONI N. SP. (OWENIIDAE, ANNELIDA POLYCHAETA) FROM THE YELLOW SEA AND EVIDENCE THAT OWENIA FUSIFORMIS IS NOT A COSMOPOLITAN SPECIES. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2001, pp.77-86. hal-03192101 HAL Id: hal-03192101 https://hal.sorbonne-universite.fr/hal-03192101 Submitted on 7 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE ET MILIEU, 2001, 51 (1-2) : 77-86 DESCRIPTION OF OWENIA GOMSONI N. SP. (OWENIIDAE, ANNELIDA POLYCHAETA) FROM THE YELLOW SEA AND EVIDENCE THAT OWENIA FUSIFORMIS IS NOT A COSMOPOLITAN SPECIES B.S. KOH, M. BHAUD Observatoire Océanologique de Banyuls, Université P. et M. Curie - CNRS, BP 44, 66650 Banyuls-sur-Mer Cedex, France e-mail: [email protected] POLYCHAETA ABSTRACT. - Two Owenia fusiformis populations from différent geographical lo- OWENIIDAE cations were comparée! to assess whether this species has a truly cosmopolitan dis- NEW SPECIES tribution. -
Identification Guide to the Planktonic Polychaete Larvae Around the Island of Helgoland (German Bight)
HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgol/inder Meeresunters. 48, 1-58 (1994) Identification guide to the planktonic polychaete larvae around the island of Helgoland (German Bight) S. Plate* & E. Husemann* * Biologische Anstalt Helgoland (Meeresstation); D-27483 Helgoland, Federal Republic of Germany ABSTRACT: The purpose of this work is to provide the means of identifying the planktonic larvae of the polychaete species appearing in the plankton around the island of Helgoland (North Sea). During a three-year survey in this area, the larvae of 54 species out of 24 families belonging to the orders Orbiniida, Spionida, Capitelhda, Phyllodocida, Oweniida, Terebelhda, Sabelhda and the former Archiannelida have been recorded. Illustrated keys to the families, genera and species are presented. To facilitate the identification, additional descriptions and information about the seasonal appearance of the species are given. INTRODUCTION More than 13 000 species of polychaetous annelids take part in the marine benthos communities worldwide. Their distribution, species composition and population density are monitored within various benthos surveys. For the North Sea, especially the German Bight and the Wadden Sea, much information about the benthic polychaete fauna is available (Caspers, 1950; Stripp, 1969; DSrjes, 1977; Rachor & Gerlach, 1978; Gillandt, 1979; Salzwedel et al., 1985; Rachor, 1990; Bosselmann, 1991; Kr6ncke, 1991). In contrast, the holoplanktonic polychaete species and the meroplanktonic polychaete larvae, which are only part of the plankton during a more or less expanded phase of their ontogenesis, have never received much attention. Meroplanktonic polychaete larvae are seldomly recorded during studies monitoring the North Sea plankton (Smidt, 1951; Giere, 1968; Fransz, 1981; Bosselmann, 1989; Belgrano et al., 1990). -
Soil-Dwelling Polychaetes: Enigmatic As Ever? Some Hints on Their
Contributions to Zoology, 70 (3) 127-138 (2001) SPB Academic Publishing bv, The Hague Soil-dwelling polychaetes: enigmatic as ever? Some hints on their phylogenetic relationships as suggested by a maximum parsimony analysis of 18S rRNA gene sequences ³ Emilia Rota Patrick Martin² & Christer Erséus ¹, 1 di Dipartimento Biologia Evolutivei. Universitd di Siena, via P. A. Mattioli 4. IT-53100 Siena, Italy, e-mail: 2 Institut des Sciences naturelles de des [email protected]; royal Belgique, Biologic Eaux donees, 29 rue Vautier, B-1000 e-mail: 3 Bruxelles, Belgium, [email protected]; Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden, e-mail: [email protected] Keywords: Terrestrial Polychaeta, Parergodrilus heideri, Stygocapitella subterranea, Hrabeiella I8S rRNA periglandulata, gene, molecular phylogeny, rapid radiation Abstract Collectionof new specimens 130 DNA extraction, amplification and sequencing 130 Alignment To re-evaluate 130 the various hypotheses on the systematic position of Phylogenetic analyses 130 Parergodrilus heideri Reisinger, 1925 and Hrabeiella Results 132 periglandulata Pizl & Chalupský, 1984,the sole truly terrestrial Discussion 132 non-clitellateannelidsknown to date, their phylogenetic relation- ships Acknowledgements 136 were investigated using a data set of new 18S rDNA References 136 of sequences these and other five relevant annelid taxa, including an unknown of species Ctenodrilidae, as well as homologous sequences available for 18 already polychaetes, one aphano- neuran, 11 clitellates, two pogonophorans, one echiuran, one Introduction sipunculan, three molluscs and two arthropods. Two different alignments were constructed, according to analgorithmic method terrestrial forms constitute (Clustal Truly a tiny minority W) and on the basis of a secondary structure model non-clitellate annelids, (DCSE), A maximum parsimony analysis was performed with among only represented by arthropods asan unambiguous outgroup.