Careers in Aerospace Within Your Lifetime
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2020 Aerospace Engineering Major
Major Map: Aerospace Engineering Bachelor of Science in Engineering (B.S.E.) College of Engineering and Computing Department of Mechanical Engineering Bulletin Year: 2020-2021 This course plan is a recommended sequence for this major. Courses designated as critical (!) may have a deadline for completion and/or affect time to graduation. Please see the Program Notes section for details regarding “critical courses” for this particular Program of Study. Credit Min. Major ! Course Subject and Title Hours Grade1 GPA2 Code Prerequisites Notes Semester One (17 Credit Hours) ENGL 101 Critical Reading and Composition 3 C CC-CMW ! MATH 141 Calculus 13 4 C CC-ARP C or better in MATH 112/115/116 or Math placement test score CHEM 111 & CHEM 111L – General Chemistry I 4 C CC-SCI C or better in MATH 111/115/122/141 or higher math or Math placement test AESP 101 Intro. to Aerospace Engineering 3 * PR Carolina Core AIU4 3 CC-AIU Semester Two (18 Credit Hours) ENGL 102 Rhetoric and Composition 3 CC-CMW C or better in ENGL 101 CC-INF ! MATH 142 Calculus II 4 C CC-ARP C or better in MATH 141 CHEM 112 & CHEM 112L – General Chemistry II 4 PR C or better in CHEM 111, MATH 111/115/122/141 or higher math ! PHYS 211 & PHYS 211L – Essentials of Physics I 4 C CC-SCI C or better in MATH 141 EMCH 111 Intro. to Computer-Aided Design 3 * PR Semester Three (15 Credit Hours) ! EMCH 200 Statics 3 C * PR C or better in MATH 141 ! EMCH 201 Intro. -
Aerospace Engine Data
AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16 -
Spacecraft American Aerospace Controls
Spacecraft For More Than 50 Years, Our Experience Is Your Assurance™ AAC Manufactures high-reliability voltage and current sensors for: Satellites UAVs Commercial Aircraft Missiles Underwater Vehicles Military Aircraft Launch Systems Armored Vehicles Ships Helicopters Industrial Equipment Rail AAC is a Woman-Owned Business and all parts are manufactured at AAC’s Farmingdale, NY location. American Aerospace Controls 570 Smith Street, Farmingdale NY 11735 Phone: +1 (631) 694-5100 – Fax: +1 (631) 694-6739 http://a-a-c.com ©American Aerospace Controls 10-2016 Aircraft-UAVs Rail AAC Quality and Engineering Industrial Defense For More Than 50 Years, Our Experience is Your Assurance™ AAC Engineering and Quality Depart- Since 1965, American Aerospace Controls has been manufacturing high reliability ments are here to work with you on the AC & DC current, voltage and frequency sensors, transducers and detectors. With design and qualification of your parts. an emphasis on engineering solutions and customer support, AAC has developed Our vast experience in space flight app- long-term relationships with some of the largest aerospace, defense, transit and industrial companies around the globe. lications allows us to offer insight into the design and requirements of each unique Space Application. AAC main- AAC in Space tains the highest standards in Quality and Production. AAC sensors have been used on numerous manned and unmanned spacecraft, satellite, rocket and Unmanned Aerial Vehicle (UAV) programs. AAC has been involved with space flight applications since the mid-1960s. AAC’s extensive From the Mercury Program in the 1960’s to today’s international commercial and knowledge and decades of experience in designing and manufacturing defense satellite systems, AAC engineers have helped design current and voltage transducers and detectors capable of providing high reliability in harsh remote detectors and transducers that are the best available. -
Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883
Journal of Aviation/Aerospace Education & Research Volume 13 Number 1 JAAER Fall 2003 Article 1 Fall 2003 Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883 Thomas Forenz Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Forenz, T. (2003). Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883. Journal of Aviation/Aerospace Education & Research, 13(1). https://doi.org/10.15394/ jaaer.2003.1559 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Forenz: Assessing the Evolution of the Airborne Generation of Thermal Lif Thermal Lift ASSESSING THE EVOLUTION OF THE AIRBORNE GENERATION OF THERMAL LIFT IN AEROSTATS 1783 TO 1883 Thomas Forenz ABSTRACT Lift has been generated thermally in aerostats for 219 years making this the most enduring form of lift generation in lighter-than-air aviation. In the United States over 3000 thermally lifted aerostats, commonly referred to as hot air balloons, were built and flown by an estimated 12,000 licensed balloon pilots in the last decade. The evolution of controlling fire in hot air balloons during the first century of ballooning is the subject of this article. The purpose of this assessment is to separate the development of thermally lifted aerostats from the general history of aerostatics which includes all gas balloons such as hydrogen and helium lifted balloons as well as thermally lifted balloons. -
Systems Engineering Essentials (In Aerospace)
Systems Engineering Essentials (in Aerospace) March 2, 1998 Matt Sexstone Aerospace Engineer NASA Langley Research Center currently a graduate student at the University of Virginia NASA Intercenter Systems Analysis Team Executive Summary • “Boeing wants Systems Engineers . .” • Systems Engineering (SE) is not new and integrates all of the issues in engineering • SE involves a life-cycle balanced perspective to engineering design and problem solving • An SE approach is especially useful when there is no single “correct” answer • ALL successful project team leaders and management employ SE concepts NASA Intercenter Systems Analysis Team Overview • My background • Review: definition of a system • Systems Engineering – What is it? – What isn’t it? – Why implement it? • Ten essentials in Systems Engineering • Boeing wants Systems Engineers. WHY? • Summary and Conclusions NASA Intercenter Systems Analysis Team My Background • BS Aerospace Engineering, Virginia Tech, 1990 • ME Mechanical & Aerospace Engineering, Manufacturing Systems Engineering, University of Virginia, 1997 • NASA B737 High-Lift Flight Experiment • NASA Intercenter Systems Analysis Team – Conceptual Design and Mission Analysis – Technology and Systems Analysis • I am not the “Swami” of Systems Engineering NASA Intercenter Systems Analysis Team Review: Definition of System • “A set of elements so interconnected as to aid in driving toward a defined goal.” (Gibson) • Generalized elements: – Environment – Sub-systems with related functions or processes – Inputs and outputs • Large-scale systems – Typically include a policy component (“beyond Pareto”) – Are high order (large number of sub-systems) – Usually complex and possibly unique NASA Intercenter Systems Analysis Team Systems Engineering is . • An interdisciplinary collaborative approach to derive, evolve, and verify a life-cycle balanced system solution that satisfies customer expectations and meets public acceptability (IEEE-STD-1220, 1994) • the absence of stupidity • i.e. -
Aerospace Manufacturing a Growth Leader in Georgia
Aerospace Manufacturing A Growth Leader in Georgia In this study: 9. Research Universities 10. GTRI and GTMI 1. Industry Snapshot 11. High-Tech Talent 3. A Top Growth Leader 12. Centers of Innovation 4. Industry Mix 13. World-Class Training Programs 6. Industry Wages and Occupational 15. Strong Partnerships and Ready Workforce Employment 16. Transportation Infrastructure 7. Pro-Business State 17. Powering Your Manufacturing Facility Community and Economic Development 8. Unionization 18. Aerospace Companies Aerospace Manufacturing A Growth Leader in Georgia Aerospace is defined as Aerospace Products and Parts Manufacturing as well as Other Support Activities for Air Transportation. Aerospace Georgia is the ideal home for aerospace include Pratt & Whitney’s expansion in companies with ¨¦§75 ¨¦§575 25+ employees companies. With the world’s most traveled Columbus in both 2016 and 2017, Meggitt «¬400 ¨¦§85 ¨¦§985 airport, eight regional airports, prominent Polymers & Composites’ expansion in military bases and accessibility to the Rockmart and MSB Group’s location in ¨¦§20 ¨¦§20 country’s fastest-growing major port, Savannah. For a complete list of new major ¨¦§85 Georgia’s aerospace industry serves a locations and expansions, see page 2. ¨¦§185 global marketplace. Georgia is also home to a highly-skilled workforce and world- ¨¦§16 Why Georgia for Aerospace? class technical expertise geared toward promoting the success of the aerospace • Highly skilled workers ¨¦§75 ¨¦§95 industry. Georgia’s business climate is • World-class technical expertise consistently ranked as one of the best • Renowned workforce training program in the country, with a business-friendly tax code and incentives that encourage • Increasing number of defense manufacturing growth for existing and personnel newly arriving companies. -
The Rotating Wing Aircraft Meetings of 1938 and 1939 Were the First
The Rotating Wing Aircraft Meetings of 1938 and 1939 This advertisement showing Pitcairn’s 1932 Tandem landing at an were the first national conferences on rotorcraft. They marked estate was typical of their strategy to market to the wealthy. “If yours a transition from a technological focus on the Autogiro to the is such an estate or if you will select a neighboring field, a Pitcairn representative will gladly demonstrate the complete practicality of helicopter. In addition, these important meetings helped to this modern American scene.” With the Great Depression wearing lay the groundwork for the founding of the American Heli- on, however, the Autogiro business was moribund by the late 1930s. copter Society. – Ed. he Rotating Wing Aircraft Meeting of October 28 This was a significant gathering for the future of – 29, 1938 at the Franklin Institute in Philadel- rotary wing flight in America, coming at a time when T phia, PA, sponsored by the Philadelphia Chapter the Autogiro movement was moribund and helicopter of the Institute of the Aeronautical Sciences (IAS, the development was just about to receive a boost with forerunner of the American Institute of Aeronautics and commencement of the just-passed Dorsey-Logan Bill. Astronautics, or AIAA), was an historic gathering of And, perhaps of greater importance, those attending – those involved, committed to and researching Autogiro, including many of the leading developers of rotary wing convertiplane and helicopter flight. It was, as described flight – were actively speculating as to the future that in the preface to the conference proceedings, “the first rotary wing flight might take. -
1 American Institute of Aeronautics and Astronautics EXTENDED
EXTENDED CAPABILITIES OF ZERO-PRESSURE AND SUPERPRESSURE SCIENTIFIC BALLOONING PLATFORMS E. Lee Rainwater*, Raven Industries, Inc., Sulphur Springs, Texas USA Debora A. Fairbrother†, NASA Wallops Flight Facility, Wallops Island, Virginia USA Michael S. Smith‡, Raven Industries, Inc., Sulphur Springs, Texas USA ABSTRACT Updated Heavy Lift Designs Balloons with maximum payloads of up to 3625 kg The 1.7 million cubic meter (60 million cubic foot) (8000 lb) have been available for many years. However, scientific balloon platform, designed and manufactured the reliability of such balloons is compromised when by Raven Industries, Inc. and funded by NASA, has flown at the maximum payload. Raven Industries, in successfully flown a payload of 680 kg (1500 lb) to a cooperation with NASA and the National Scientific float altitude of over 48.7 km (160 kft). This record- Balloon Facility (NSBF), has developed a new 1 MCM breaking flight, performed in August, 2002, greatly (36.7 MCF) heavy-load balloon design which utilizes extended the performance envelope of scientific bal- three-layer co-extruded film technologies developed for looning platforms with regard to its ability to lift sig- the ULDB program. This balloon promises to utilize the nificant payloads to extreme altitudes. This has, in turn, full gross inflation capacity of NSBF’s launch equip- generated significant interest from the scientific com- ment, while delivering the near-100% reliability associ- munity regarding the increased altitude and duration ated with existing medium-capacity balloons. capabilities of scientific ballooning platforms. Zero-pressure Ultra-high Altitude Balloons (UHABs) In order to explore future capabilities and establish a ULDB film technology also found practical application future direction for ultra high-altitude platforms, NASA 1 and Raven have partnered in a study to determine the in the 60 MCF “Big 60” balloon . -
Micro-Jet Test Facility for Aerospace Propulsión Engineering Education*
Micro-Jet Test Facility for Aerospace Propulsión Engineering Education* G. L. JUSTE, J. L. MONTAÑÉS and A. VELAZQUEZ Universidad Politécnica de Madrid, School of Aeronautics, Aerospace Propulsión and Fluid Mechanics Department, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain. E-mail: [email protected] This paper describes the methodology that has been developed and implemented at the School of Aeronautics (ETSIA) of the Universidad Politécnica de Madrid (UPM) to familiarize aerospace engineering students with the operation ofreal complexjet engine systems. This methodology has a two-pronged approach: students carry out preparatory work by using, first, a gas turbine performance prediction numerical code; then they valídate their assumptions and results on an experimental test rig. When looking at the educational aspects, we have taken care that, apartfrom being sufficiently robust and flexible, the experimental set-up is similar to real jet engine rigs, so the students are not constrained to exploring a much too limited parametric space. Also, because a facility like this is usually subject to extensive and somewhat rugged use, we have focused on a low cosí design. Keywords: micro-jet engine test facility; aerospace propulsión INTRODUCTION should be considered: (1) a comprehensive under standing of these systems is based on acquiring AEROSPACE ENGINEERING EDUCATION theoretical, computational and experimental test in Europe is undergoing a significant change for knowledge, and (2) the cost of a jet engine experi two reasons: (1) the aerospace industry, which mental facility is too high for many public univer- used to be a mostly national concern, is now sities, not to mention the environmental aspects consolidating at the continental level, and (2) a associated with the fact that some of these institu- common frame of engineering education is devel- tions, like ours, are located in downtown áreas. -
The Origins of Aerospace Engineering Degree Courses
Contributed paper Introduction Theorigins of the aerospaceindustry go back The origins of manycenturies. Everyone is familiar with the aerospace engineering storyof Icaruswho having designed a pairof wings,attempted to ¯y.Hewas successfulbut degree courses ¯ewtooclose to the sun,whereupon the adhesiveused as wingfastening melted due to E.C.P. Ransom and thermalradiation and his ¯ ightended in A.W. Self disaster.At the timethis wouldhave been regardedas science® ction,but clearly there was someawareness of aerodynamics(for wingdesign), adhesives and thermal radiation. The authors Inretrospect, it isapparent that before E.C.P. Ransom and A.W. Self are at Kingston University, successfulman carrying powered ¯ ightcould London, UK bedemonstrated, there had been a periodof intensestudy including experimental and Keywords theoreticalanalysis. The Royal Aeronautical Society,formed in 1866, precededthe ®rst Higher education, Aerospace engineering ¯ightby some37 years.As alearnedsociety it encouragedthe discoveryand exchange of Abstract knowledgenecessary for successful heavier The development of degree courses specically designed than air¯ ight. for aerospace engineers is described in relation to the Orvilleand Wilbur Wright, contrary to change in needs of the industry since the demonstration of popularunderstanding, were extremely powered ight. The impact of two world wars and political talentedresearch workers as wellas decisions on the way universities have been able to meet competentdesigners. T oimprovetheir the demand for graduates is discussed. -
A Case Study of Evolvability and Excess on the B-52 Stratofortress and F/A-18 Hornet
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC 2017 August 6-9, 2017, Cleveland, Ohio IDETC2017-67886 A CASE STUDY OF EVOLVABILITY AND EXCESS ON THE B-52 STRATOFORTRESS AND F/A-18 HORNET Daniel Long Dr. Scott Ferguson1 Graduate Research Assistant Associate Professor North Carolina State University North Carolina State University Raleigh, NC, USA Raleigh, NC, USA [email protected] [email protected] ABSTRACT operate for 60 years, yet there is speculation that they The moment a system is put into service it begins to lose value ultimately could operate for eighty to one hundred years [2]. as technological and societal changes accrue while the system The total cost of building a replacement unit in 2009 was is frozen in the state it was constructed. System decision estimated at $7 billion per unit excluding transmission [3], makers are faced with the choice of accepting a decline in which was a nontrivial fraction of the then $53.5 billion market performance, updating the design, or retiring the system. Each cap for Duke Energy, the largest utility in the US [4]. time a decision maker faces these alternatives, the value of the A variety of methods for increasing CES lifecycle value available options must be evaluated to determine the preferred have been explored in literature. Design for: adaptability [5], course of action. A design that can adapt to changes with flexibility [6,7], changeability [8,9], and reconfigurability [10] minimal cost should provide more value over a longer period all provide system designers with heuristics and tools to design than a system that is initially less costly, but less adaptable. -
Innovation in Space Exploration
COLLINS AEROSPACE Collins Aerospace has played a role in many of NASA’s most significant milestones. This heritage of innovation continues as we build systems to INNOVATION IN serve the next generation of space exploration. History of space innovation SPACE EXPLORATION Collins Aerospace has been enabling life and communications in space for more than 50 years. 1960s present PROJECTS MERCURY PROJECT APOLLO SKYLAB SPACE SHUTTLE INTERNATIONAL SPACE AND GEMINI STATION Developed the Transmitted voice Utilized our Provided voice, spacesuit and audio/ and data with Collins extravehicular mobility Continue to enable a telemetry and precision video technology for communication unit (EMU) during habitable environment tracking data our first steps on the technology satellite deployment for the crew with moon; Earth-based and retrieval/ our environmental communications/ maintenance; and our control and life support tracking network; avionics during landing systems; our EMUs radio, data and supported assembly communications; and in 2000 life support technology collinsaerospace.com/space A continuing legacy of exploration THE EXTRAVEHICULAR MOBILITY UNIT (EMU) IS CONSIDERED THE WORLD’S SMALLEST SPACECRAFT MARS ROVER The EMU can protect astronauts in Since 2003, we have provided multiple lens designs temperatures ranging from -250° F and assemblies for the Mars Rover cameras at the to 250° F (-156° C to 121° C). Jet Propulsion Laboratory (JPL). Lens assemblies were also used as part of the JunoCam for the The EMU protects astronauts from Jupiter mission. micrometeoroids traveling up to 17,000 mph [27,358 km/h]. SPACE WHEELS The EMU weighs approximately 275 lbs. [125 kg] and contains more than 18,000 Our space wheel technology has accumulated more parts.