Biochar Reduces the Stability of Soil Aggregates During Intensive Leaching Experiment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION -
The Distribution of Silty Soils in the Grayling Fingers Region of Michigan: Evidence for Loess Deposition Onto Frozen Ground
Geomorphology 102 (2008) 287–296 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The distribution of silty soils in the Grayling Fingers region of Michigan: Evidence for loess deposition onto frozen ground Randall J. Schaetzl ⁎ Department of Geography, 128 Geography Building, Michigan State University, East Lansing, MI, 48824-1117, USA ARTICLE INFO ABSTRACT Article history: This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Received 12 September 2007 Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial Received in revised form 25 March 2008 sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; Accepted 26 March 2008 data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its Available online 10 April 2008 down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial fl Keywords: sediments that underlie it and is located only on the attest parts of the Finger uplands and in the bottoms of Glacial geomorphology upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers Loess during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a Permafrost comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either Kettles closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition. -
Evolution of Loess-Derived Soil Along a Topo-Climatic Sequence in The
European Journal of Soil Science, May 2017, 68, 270–280 doi: 10.1111/ejss.12425 Evolution of loess-derived soil along a climatic toposequence in the Qilian Mountains, NE Tibetan Plateau F. Yanga,c ,L.M.Huangb,c,D.G.Rossitera,d,F.Yanga,c,R.M.Yanga,c & G. L. Zhanga,c aState Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NO. 71 East Beijing Road, Xuanwu District, Nanjing 210008, China, bKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11(A), Datun Road, Chaoyang District, Beijing 100101, China, cUniversity of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China, and dSchool of Integrative Plant Sciences, Section of Soil and Crop Sciences, Cornell University, Ithaca NY 14853, USA Summary Holocene loess has been recognized as the primary source of the silty topsoil in the northeast Qinghai-Tibetan Plateau. The processes through which these uniform loess sediments develop into diverse types of soil remain unclear. In this research, we examined 23 loess-derived soil samples from the Qilian Mountains with varying amounts of pedogenic modification. Soil particle-size distribution and non-calcareous mineralogy were changed only slightly because of the weak intensity of chemical weathering. Accumulation of soil organic carbon (SOC) and leaching of carbonate were both identified as predominant pedogenic responses to soil forming processes. Principal component analysis and structural analysis revealed the strong correlations between soil carbon (SOC and carbonate) and several soil properties related to soil functions. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Kaolinite Dating from Acrisol and Ferralsol
Kaolinite dating from Acrisol and Ferralsol: A new key to understanding the landscape evolution in NW Amazonia (Brazil) Maximilien Mathian, Guilherme Taitson Bueno, Etienne Balan, Emmanuel Fritsch, Nádia Regina Do Nascimento, Madeleine Selo, Thierry Allard To cite this version: Maximilien Mathian, Guilherme Taitson Bueno, Etienne Balan, Emmanuel Fritsch, Nádia Regina Do Nascimento, et al.. Kaolinite dating from Acrisol and Ferralsol: A new key to understand- ing the landscape evolution in NW Amazonia (Brazil). Geoderma, Elsevier, 2020, 370, pp.114354. 10.1016/j.geoderma.2020.114354. hal-03047287 HAL Id: hal-03047287 https://hal.archives-ouvertes.fr/hal-03047287 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Kaolinite dating from Acrisol and Ferralsol: a new key to 2 understanding the landscape evolution in NW Amazonia (Brazil) 3 4 Maximilien Mathian1, Guilherme Taitson Bueno2, Etienne Balan1, Emmanuel Fritsch1, Nádia 5 Regina do Nascimento3, Madeleine Selo1, Thierry Allard1 6 7 1Sorbonne Université, Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR 8 CNRS 7590, IRD, MNHN, Université Pierre et Marie Curie, 4 Place Jussieu, 75005, France 9 2Federal University of Goiás - UFG, Instituto de Estudos Socioambientais, Av. -
Effects of Treated Wastewater Irrigation on Soil Salinity and Sodicity in Sfax (Tunisia): a Case Study"
CORE Metadata, citation and similar papers at core.ac.uk Provided by Érudit Article "Effects of treated wastewater irrigation on soil salinity and sodicity in Sfax (Tunisia): A case study" Nebil Belaid, Catherine Neel, Monem Kallel, Tarek Ayoub, Abdel Ayadi, et Michel Baudu Revue des sciences de l'eau / Journal of Water Science, vol. 23, n° 2, 2010, p. 133-146. Pour citer cet article, utiliser l'information suivante : URI: http://id.erudit.org/iderudit/039905ar DOI: 10.7202/039905ar Note : les règles d'écriture des références bibliographiques peuvent varier selon les différents domaines du savoir. Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter à l'URI https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Érudit est un consortium interuniversitaire sans but lucratif composé de l'Université de Montréal, l'Université Laval et l'Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. Érudit offre des services d'édition numérique de documents scientifiques depuis 1998. Pour communiquer avec les responsables d'Érudit : [email protected] Document téléchargé le 13 février 2017 01:03 EFFECTS OF TREATED WASTEWATER IRRIGATION ON SOIL SALINITY AND SODICITY IN SFAX (TUNISIA): A CASE STUDY Effets de l’irrigation par les eaux usées traitées sur la salinité et la sodicité des sols de Sfax (Tunisie): Un cas d’étude Nebil belaid1,2 , CatheriNe Neel2*, MoNeM Kallel3, -
Soils Diversity Iberian Peninsula
SOILS DIVERSITY IN THE SOUTHWEST OF IBERIAN PENINSULA Beatriz Ramírez1; Luís Fernández-Pozo1; José Cabezas1; Rui Alexandre Castanho1*; Luís Loures2 1 Environmental Resources Analysis Research Group (ARAM). University of Extremadura. Badajoz. Spain. 2 ESAE – Portalegre Polytechnic School, Portugal and Research Centre for Spatial and Organizational Dynamics (CIEO), University of Algarve, Portugal. * Presenter | 28.04.2017 |Room 2.20 authors contacts: [email protected] | [email protected]| joca fer @unex.es | [email protected] | [email protected] INTRODUCTION An increase in the development of Digital Soil Cartography methods has been noticed in recent decades. The proposal put forward by the World Reference Base for Soil Resource (WRB) (FAO, 1998) establishes that, for the World Map Soils, a first level with 30 soils typologies and for the second 531. In Europe, the development of this mapping has been coordinated by European Soil Bureau Network (ESBN), the European Environment Agency (EEA) and also by Food and Agriculture Organization of the United Nations (FAO), identifying 26 first level soils typologies and 134 from the second level. INTRODUCTION Taking as reference the mentioned soil map, the research group have been studied the pedodiversity in the Southwest of Iberian Peninsula (Euro region Alentejo-Centro- Extremadura, EUROACE) through the use of Geographical Information Systems and diversity algorithms. The pedodiversity concept, takes its origin in ecological measures and defines, according to Ibañez et al., (1998): “the soil variability in a specific area or region, determined by its constitution, types, attributes and the conditions in which the different types of soils were formed ". The edafodiversity analysis, using diversity indexes, has allowed to approach in a quantitative and rigorous way the soils geography, and also enable to classify to the edafo-rate according to their spatial distribution typologies. -
The Muencheberg Soil Quality Rating (SQR)
The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Zentrum fuer Agrarlandschaftsforschung (ZALF), Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 1 Draft, Nov. 2007 The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V., Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 2 TABLE OF CONTENTS PAGE 1. Objectives 4 2. Concept 5 3. Procedure and scoring tables 7 3.1. Field procedure 7 3.2. Scoring of basic indicators 10 3.2.0. What are basic indicators? 10 3.2.1. Soil substrate 12 3.2.2. Depth of A horizon or depth of humic soil 14 3.2.3. Topsoil structure 15 3.2.4. Subsoil compaction 17 3.2.5. Rooting depth and depth of biological activity 19 3.2.6. -
Caracterización Fisicoquímica De Un Calcisol Bajo
Revista Mexicana de Ciencias Forestales Vol. 9 (49) DOI: https://doi.org/10.29298/rmcf.v9i49.153 Artículo Caracterización fisicoquímica de un Calcisol bajo diferentes sistemas de uso de suelo en el noreste de México Physicochemical characterization of a Calcisol under different land -use systems in Northeastern Mexico Israel Cantú Silva1*, Karla E. Díaz García1, María Inés Yáñez Díaz1, 1 1 Humberto González Rodríguez y Rodolfo A. Martínez Soto Abstract: Changes in land use cause variations in the physicochemical characteristics of soil. The present study aims to quantify the changes in the physicochemical characteristics of a Calcisol in three land uses in the Northeast of Mexico: Native Vegetation Area (AVN), Cropland Area (AA) and Pasture Area (ASP). Four composite soil samples were taken at 0-5 and 5-30 cm depth from each land- use plot. The variables bulk density, texture, mechanical resistance to penetration, organic matter, pH and electric conductivity were determined. The analysis of variance showed differences in the organic matter with values of 4.2 % for AVN, 2.08 % for ASP and 1.19 % and for AA in the depth 0-5 cm. The texture was clay loam for AA, silty loam for ASP and loam for AVN showing differences. The soil under the three types of land -use presented low salinity (70.2 to 396.0 µS cm-1) showing differences at both depths. The soil hardness showed differences (p≤0.05) between plots. The AA showed lower values (0.78 kg cm- 2), contrasting with the values obtained for ASP (2.98 kg cm-2) and AVN (3.10 kg cm-2). -
Assessment of Variability in the Quality of an Acrisol Under Different Land Use Systems in Ghana
Open Journal of Soil Science, 2012, 2, 33-43 33 http://dx.doi.org/10.4236/ojss.2012.21006 Published Online March 2012 (http://www.SciRP.org/journal/ojss) Assessment of Variability in the Quality of an Acrisol under Different Land Use Systems in Ghana Emmanuel Osadu Ghartey, Gabriel N. N. Dowuona*, Eric K. Nartey, Thomas A. Adjadeh, Innocent Y. D. Lawson Department of Soil Science, School of Agriculture, University of Ghana, Legon, Ghana. Email: *[email protected] Received November 10th, 2011; revised December 20th, 2011; accepted December 30th, 2011 ABSTRACT Three land use types (natural fallow, Leucaena leucocephala woodlot and cultivated plots) on a Ferric Acrisol in a semi-arid tropical zone of Ghana were compared to assess their effects on variability in selected soil properties and plant biomass accumulation. Organic carbon accumulation in the representative natural fallow profile was 22.7 g/kg, followed by 16.5 g/kg for the Leucaena woodlot and lastly 11.8 g/kg for the cultivated site. The mean bulk density of the natural fallow, Leucaena woodlot and cultivated sites were from 1.36 Mg/m3, 0.92 Mg/m3 and 1.33 Mg/m3 with corresponding range in mean weight diameter of 0.5 mm - 1.2 mm, 0.6 mm - 1.2 mm and 1.0 mm - 1.2 mm, respec- tively. The lower bulk density observed for the woodlot corresponds to increased total porosity, aeration, and root pro- liferation due to the stronger and extensive rooting system. Significant differences (P < 0.05) in bulk density, mean weight diameter (MWD), clay content, organic carbon and total nitrogen existed among the land use types. -
S41598-021-96384-7.Pdf
www.nature.com/scientificreports OPEN A mechanical insight into the triggering mechanism of frequently occurred landslides along the contact between loess and red clay Baoqin Lian1, Xingang Wang1*, Kai Liu1, Sheng Hu2 & Xiao Feng3 The triggering mechanism and movement evolution of loess-red clay landslides, which occurred frequently along the contact between the loess and red clay on the Loess Plateau, are closely related to the mechanical properties of the contact surface. This work presents an experimental investigation on loess, clay and loess-red clay interlaminar (LRCI) samples obtained from a typical loess-red clay landslide in northern part of Shaanxi province of China, using a series of ring shear tests, microscopic observation and scanning electron microscopy tests, in an attempt to explore the mechanical behavior of loess, clay and LRCI samples with variation in moisture content, normal stress and shear rate. The results revealed that for all specimens, both the peak shear strength τp and the residual shear strength τr decreased with increasing moisture content, among which, moisture content has the greatest infuence on the τp and τr of red clay, followed by the LRCI specimen, and the loess specimen is least afected by moisture content. Meanwhile, exponential functions describing the correlations between shear strength and moisture content of LRCI, red clay and loess specimens were proposed. Furthermore, the macroscopic morphological characteristics and the microstructure of shear surface obtained from the LRCI specimens showed that a localized water accumulation was built up within the shear surface as the water content increases to some extent, and a high degree of liquefaction developed within shear surface when the moisture content reached to the saturate degree. -
Soil Organic Matter As Sole Indicator of Soil Degradation
Environ Monit Assess (2017) 189:176 DOI 10.1007/s10661-017-5881-y Soil organic matter as sole indicator of soil degradation S.E. Obalum & G.U. Chibuike & S. Peth & Y. Ouyang Received: 27 July 2016 /Accepted: 7 March 2017 # Springer International Publishing Switzerland 2017 Abstract Soil organic matter (SOM) is known to play properties as well. Thus, functions of SOM almost al- vital roles in the maintenance and improvement of many ways affect various soil properties and processes and soil properties and processes. These roles, which largely engage in multiple reactions. In view of its role in soil influence soil functions, are a pool of specific contribu- aggregation and erosion control, in availability of plant tions of different components of SOM. The soil func- nutrients and in ameliorating other forms of soil degra- tions, in turn, normally define the level of soil degrada- dation than erosion, SOM has proven to be an important tion, viewed as quantifiable temporal changes in a soil indicator of soil degradation. It has been suggested, that impairs its quality. This paper aims at providing a however, that rather than the absolute amount, temporal generalized assessment of the current state of knowl- change and potential amount of SOM be considered in edge on the usefulness of SOM in monitoring soil its use as indicator of soil degradation, and that SOM degradation, based on its influence on the physical, may not be an all-purpose indicator. Whilst SOM re- chemical and biological properties and processes of mains a candidate without substitute as long as a one- soils.