Calcite Scale Formation in the Green Liquor Handling System of the Kraft Chemical Recovery Process

Total Page:16

File Type:pdf, Size:1020Kb

Calcite Scale Formation in the Green Liquor Handling System of the Kraft Chemical Recovery Process Calcite Scale Formation in the Green Liquor Handling System of the Kraft Chemical Recovery Process by Alisha Giglio A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Department of Chemical Engineering and Applied Chemistry University of Toronto ©Copyright by Alisha Giglio 2018 Calcite Scale Formation in the Green Liquor Handling System of the Kraft Chemical Recovery Process Alisha Giglio Master of Applied Science Department of Engineering and Applied Chemistry University of Toronto 2018 Abstract The formation of calcite (CaCO3) scale in green liquor handling systems is a persistent problem in many kraft pulp mills. CaCO3 precipitates when its concentration in green liquor exceeds its solubility. In this work, a laboratory study was conducted to determine the effects of green liquor properties (temperature, TTA, causticity, and sulfidity) on the solubility limits of CaCO3. This new solubility data was used to develop a database of CaCO3 solubility in green liquor using the OLI Systems Inc. software. The second part of this work involved field studies at four kraft pulp mills in Canada and Sweden, to help understand scaling problems affecting the causticizing plants. The results help explain how CaCO3 scale forms in the green liquor handling systems. Understanding how CaCO3 scale is formed helps pulp mills develop viable strategies for mitigating the problem. ii Acknowledgements I would first like to thank my supervisors Professor Honghi N. Tran and Professor Vladimiros G. Papangelakis for their motivation, support, and guidance throughout this project. I will never forget the professional and personal skills they have taught me that will be valuable in my future career. I would like to extend my gratitude to my Reading Committee members, Professor Nikolai DeMartini and Professor Charles Jia for their helpful discussions, feedback, and comments. Many thanks are due to Sue Mao, whose door was always open whenever I had a question or needed guidance with my research, and Dr. Georgiana Moldoveanu who was always there to assist me with laboratory issues. I am also thankful to Nazin Orang for proof-reading this thesis, and my friends and colleagues whom I have worked with over the past two years. This work was conducted as part of the research program on “Increasing Energy and Chemical Recovery Efficiency in the Kraft Process - III”, jointly supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and a consortium of the following companies: Andritz, AV Nackawic, Arauco, Celulose Nipo-Brasileira, Canadian Kraft Paper, Clyde- Bergemann, DMI Peace River Pulp, Domtar, Eldorado, ERCO Worldwide, Fibria, FP Innovations, Georgia Pacific, International Paper, Irving Pulp & Paper, Kiln Flame Systems, Klabin, StoraEnso Research, Suzano, Tembec, Valmet, and West Rock. I would like to thank the consortium members for their financial support as well as valuable discussions and information regarding causticizing plant operations, and scaling problems specific to this work. I would like to personally thank Moise Dion of DMI Peace River Pulp, and Blair Rydberg of Canadian Kraft Paper, for their contributions to the field studies. Finally, I would like to express my sincerest gratitude to Maria Björk and Rickard Wadsborn of Stora Enso, as well as the entire Biomaterials group for hosting me and offering their guidance, friendship, and support during my time in Sweden. Finally, I must express my gratitude to my parents and for providing me with their love and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. iii Table of Contents Acknowledgements ........................................................................................................................ iii Table of Contents ........................................................................................................................... iv List of Tables ............................................................................................................................... viii List of Figures ................................................................................................................................ ix List of Abbreviations ................................................................................................................... xvi Chapter 1 ......................................................................................................................................... 1 1 Introduction ............................................................................................................................. 1 1.1 The Kraft Process ............................................................................................................ 1 1.2 Causticizing Plant ........................................................................................................... 3 1.3 Standard Kraft Pulping Terms ........................................................................................ 5 1.3.1 Total Titratable Alkali (TTA) ..................................................................................... 5 1.3.2 Effective Alkali (EA) and Active Alkali (AA) ........................................................... 6 1.3.3 Causticizing Efficiency (CE) ...................................................................................... 6 1.3.4 Sulfidity ...................................................................................................................... 7 1.3.5 Reduction .................................................................................................................... 7 1.4 Scale Formation in Causticizing Plants .......................................................................... 7 1.5 Motivation and Objectives .............................................................................................. 9 Chapter 2 ....................................................................................................................................... 11 2 Literature Review .................................................................................................................. 11 2.1 Physical Properties of Calcium Carbonate ................................................................... 11 2.2 Calcium Carbonate Scale .............................................................................................. 11 2.2.1 Scale Deposition Mechanism .................................................................................... 12 2.2.2 Calcium Carbonate Phase Transformations .............................................................. 13 iv 2.3 Previous Studies of Calcium Carbonate Solubility ....................................................... 14 2.3.1 Calcium Carbonate Solubility in Water .................................................................... 15 2.3.2 Calcium Carbonate Solubility in Green Liquor ........................................................ 17 2.4 Calcium Carbonate Stability in Green Liquor Systems ................................................ 18 Chapter 3 ....................................................................................................................................... 20 3 Current OLI Models of Calcium Carbonate Solubility ......................................................... 20 3.1 OLI Software ................................................................................................................ 20 3.2 Calcium Carbonate Solubility Using OLI’s MSE Model ............................................. 21 Chapter 4 ....................................................................................................................................... 24 4 Experimental Investigation of Calcium Carbonate Solubility .............................................. 24 4.1 Experimental Procedures .............................................................................................. 24 4.1.1 Apparatus .................................................................................................................. 24 4.1.2 Materials and Methodology ...................................................................................... 25 4.1.3 Solubility Units ......................................................................................................... 26 4.2 Results and Discussion ................................................................................................. 26 4.2.1 CaCO3-Na2CO3-H2O System .................................................................................... 26 4.2.2 CaCO3-Na2CO3-NaOH-H2O System ........................................................................ 35 4.2.3 CaCO3-Na2CO3-Na2S-H2O System .......................................................................... 37 4.3 Solid Sample SEM Analysis ......................................................................................... 39 4.4 Summary ....................................................................................................................... 39 Chapter 5 ....................................................................................................................................... 41 5 Thermodynamic Modelling of Calcium Carbonate Solubility ............................................. 41 5.1 OLI Software ...............................................................................................................
Recommended publications
  • Master's Thesis
    2008:081 MASTER'S THESIS Pulping Wastes and Abandoned Mine Remediation Application of green liquor dregs and other pulping by-products to the solidification/stabilisation of copper mine tailings Lucile Villain Luleå University of Technology D Master thesis Chemistry Department of Civil and Environmental Engineering Division of Architecture and Infrastructure 2008:081 - ISSN: 1402-1552 - ISRN: LTU-DUPP--08/081--SE Luleå University of Technology MASTER THESIS Pulping Wastes and Abandoned Mine Remediation Application of green liquor dregs and other pulping by-products to the solidification/stabilisation of copper mine tailings Lucile Villain June 2008 Department of Civil, Mining and Environmental Engineering Division of Architecture and Infrastructure ACKNOWLEDGEMENTS This master thesis was realised in Luleå University of Technology and in Ramböll Sverige AB consultancy in Luleå (Northern Sweden). I would like to express my gratitude to my supervisor Christian Maurice who made the project possible and who guided me throughout this work while granting me autonomy as well. I am also grateful to Ramböll team who nicely welcomed me in spite of my poor Swedish, and helped in practical issues. I would like to thank Nils Hoffner for his useful information, Tomas Forsberg for his valuable help in the laboratory, Ulla-Britt Uvemo for her kind and constant assistance, and Lea Rastas Amofah for her friendly company and wise advice. I am also thankful towards my family who encouraged me and sent me motivation from France; many thanks to my friends in Luleå who gave me support and joy during these days. 1 ABSTRACT Green liquor dregs are one type of chemical by-products produced by the pulp and paper industry which are usually landfilled, and cause concern to the pulp mills due to the cost of landfilling.
    [Show full text]
  • Separation and Utilization of Solid Residue Streams from Kraft Pulp Mills
    Separation and Utilization of Solid Residue Streams from Kraft Pulp Mills Master’s thesis in Innovative and Sustainable Chemical Engineering CECILIA STEEN Department of Chemistry and Chemical Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2016 Master’s thesis 2016 Separation and Utilization of Solid Residue Streams from Kraft Pulp Mills CECILIA STEEN Department of Chemistry and Chemical Engineering Division of Forest Products and Chemical Engineering Chalmers University of Technology Gothenburg, Sweden 2016 Separation and Utilization of Solid Residue Streams from Kraft Pulp Mills CECILIA STEEN © CECILIA STEEN, 2016. Supervisors: Tuve Mattsson, Department of Chemistry and Chemical Engineering Maria Björk, Stora Enso Biomaterials Rickard Wadsborn, Stora Enso Pulp Competence Centre Examiner: Hans Theliander, Department of Chemistry and Chemical Engineering Master’s Thesis 2016 Department of Chemistry and Chemical Engineering Division of Forest Products and Chemical Engineering Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: A schematic of the chemical recovery process of a Kraft pulp mill. Typeset in LATEX Printed by Department of Chemistry and Chemical Engineering Gothenburg, Sweden 2016 iv Separation and Utilization of Solid Residues Streams from Kraft Pulp Mills CECILIA STEEN Department of Chemistry and Chemical Engineering Chalmers University of Technology Abstract Separation of solid residues serve as an important kidney of non-process elements in a kraft pulp mill. The separation and later utilization of these residues as a possible source of nutrients in the forest is of interest in this thesis. One such solid residue is green liquor dregs, which are removed from the green liquor by means of filtration.
    [Show full text]
  • Black Liquor Gasification
    Black Liquor Gasification Summary and Conclusions from the IEA Bioenergy ExCo54 Workshop This publication provides Wood and Wastes the record of a workshop organised by IEA Bioenergy. CO2 Pool Black liquor gasification is an interesting option for production of synthesis gas that can subsequently be converted to a variety of motor fuels. The technology can be integrated into modern, Carbon ecocyclic, kraft pulp mill Dioxide Pulp and Paper biorefineries. USA and Sweden lead developments in this field. It is of interest primarily among countries with strong pulp and paper industries and national policies which promote substitution of petrol and diesel by biofuels. IEA Bioenergy IEA BIOENERGY: ExCo:2007:03 INTRODUCTION a large pulp and paper industry. It is thus of great interest to convert the primary energy in the black liquor to an This publication provides a summary and the conclusions energy carrier of high value. from a workshop organised by IEA Bioenergy. It was held in conjunction with the 54th meeting of the Executive Worldwide, the pulp and paper industry currently processes Committee in Ottawa on 6 October 2004. The purpose of the about 170 million tonnes of black liquor (measured as dry workshop was to present the developments of black liquor solids) per year, with a total energy content of about 2EJ, gasification for the production of energy and/or biofuels making black liquor a very significant biomass source (see for transport and discuss the remaining barriers, either Figure 1). In comparison with other potential biomass technical or strategic, that need to be overcome in order sources for chemicals production, black liquor has the to accelerate the successful demonstration of black liquor great advantage that it is already partially processed and gasification technologies and subsequently their penetration exists in a pumpable, liquid form.
    [Show full text]
  • American Ft Forest & Paper 2QE5
    A 1 , i American Ft Forest & Paper 2QE5; Association , - May 6, 2015 Via Hand Delivery and by Email to iones.iim(a^epa.gov Administrator Gina McCarthy (1101A) Office of the Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 Re: Reguest for Full Exemption of Four Pulping Chemicals from the TSCA Chemical Data Reporting Rule Reguirements Dear Administrator McCarthy: The American Forest & Paper Association (AF&PA) hereby petitions EPA to amend the Chemical Data Reporting rule (CDR), 40 C.F.R. Part 711, to exempt from all CDR requirements four pulping chemicals involved in the manufacture of paper and other pulp-based products. The four pulping chemicals are complex mixtures used in the kraft pulping process: • Sulfite Liquors and Cooking Liquors, white (CAS No. 68131-33-9) (white liquor) • Sulfite Liquors and Cooking Liquors, spent (CAS No. 66071-92-9) (black liquor) • Sulfite Liquors and Cooking Liquors, spent, oxidized (CAS No. 68514-09-0) (black liquor, oxidized) • Sulfite Liquors and Cooking Liquors, green (CAS No. 68131-30-6) (green liquor) Each of these substances is manufactured and recycled onsite in a continuous closed loop. EPA has an enormous amount of information about these pulping chemicals and little current interest in them, as their potential risks are well understood and adequately managed. 1101 K Street, N.W., Suite 700 • Was hington, D.C.20005 • (202) 463•2700 •afandpa.org May 6, 2015 Page 2 This petition first identifies the four pulping chemicals in greater detail and explains why the kraft chemical regeneration process has led to inflated production volumes for these pulping chemicals in CDR data.
    [Show full text]
  • M^Ittt of $I)Tlos!Opfip in CHEMISTRY
    PHYSICO-CHEMICAL STUDIES ON HEAVY METALS IN INDUSTRIAL WASTES AND RIVER WATER DISSERTATION FOR M^ittt of $I)tlos!opfip IN CHEMISTRY BY RUBINA CHAUDHARY DEPARTMENT OF CHEMISTRY ALIGARH MUSLIM UNIVERSITY ALIGARH (INDIA) 1989 DS1531 /^: F-HJ-VES I CO'—CHEIM I C(=%L- OT'LJFJ T. ESS ON HEZi^SW METi^^LS I hJ I hJDLJSTR:: I s^^il W#=IISTIE:S (=mMO RIVER: WftTEFi A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMINTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN CHEMISTRY RUBINA CHAUDHARY Department of Chemistry Aligarh Muslim University ALIGARH 1989 rnone : unice : t)U4Z Z. H. College of Engineering & Technology DEPARTMENT OF APPLIED CHEMISTRY Aligarh Muslim University ALIGARH—202002 (INDIA) Ref. No. Dated CERTIFICATE This is to certify that the work des­ cribed in this dissertation is the original work of Miss Rubina Chaudhary, carried out under my supervision and guidance. She has fulfilled all the requirements for the award of M.Phil, degree under the Academic Ordinaces of the Aligarh Muslim University, Aligerh. The work included in this disser­ tation has not been submitted elsewhere. 6.11.1989 PROF. MOHAMI^AD AsJl-'-y' ^ Supervisor ACKNOWLEDGEME Hr I am extremely grateful to my Supervisor Professor Mohansnad Ajmal for his guidance/ advice and personal interest during the course of this work, without whose sympathetic and inspiring attitude, timely assistance and affectionate encouragement this work would not have emerged in its present form. My thanks are also due to Prof. K.T.Nasim, Chairman, Department of Applied Chemistry, Z.H. College of Engineering & Technology, Allgarh Muslim university, Aligarh, for providing necessary facilities.
    [Show full text]
  • Alkaline Pulping: Deadload Reduction Studies in Chemical Recovery System
    ALKALINE PULPING: DEADLOAD REDUCTION STUDIES IN CHEMICAL RECOVERY SYSTEM A Thesis Presented To The Academic Faculty By Yusup Chandra In Partial Fulfillments Of the Requirements for the Degree Master of Science in Paper Science Engineering School of Chemical & Biomolecular Engineering Georgia Institute of Technology November 8th, 2004 ALKALINE PULPING: DEADLOAD REDUCTION STUDIES IN CHEMICAL RECOVERY SYSTEM Approved by: Dr. Howard (Jeff) Empie, Advisor Dr. Yulin Deng Dr. Sujit Banerjee Date Approved: November 8th, 2004 ACKNOWLEDGMENT I would like to dedicate this thesis first and foremost to my parents, Azis and Rienni, who have given me all the love and support the years. I would like to thank IPST for this great opportunity to attend this Georgia Tech and to meet all of the wonderful people here. Dr. Empie thanks for introducing me to this new thesis topic and doing a great job. I know it has been difficult through this period of time, but we got through it. Dr. Banerjee and Dr. Deng thank you for taking the time out of your busy schedules. I appreciate all the assistance and advice I have received from everyone on the committee. Lastly, I would like to thank the people that made my stay here in Atlanta an exciting and memorable experience. Special thanks to Luis, Sheila, Daniel, Jacobo, Josh, and Trevor who made getting through the toughest times so much easier. iii TABLE OF CONTENTS Acknowledgment iii Table of Contents iv List of Tables vi List of Figures vii Summary viii Chapter 1 Introduction 1 1.1. Terms and Definitions 2 1.2.
    [Show full text]
  • Construction Health and Safety Manual: Pulp and Paper Mills
    PULP AND PAPER MILLS 33 PULP AND PAPER MILLS The two common forms of chemical pulping are 1) the dominant “alkaline” or “kraft” process, and Processes 2) the “acid pulping” or “sulphite” process. Acid pulping has generally declined but is still in use. The A number of processes, grouped by type as mechanical, digester liquor is a solution of sulphurous acid, H SO , chemical, and semi-chemical (or hybrid), are used in 2 3 mixed with lime (CaO) or other base (magnesium, the preparation of wood pulp. In 1990 (according to sodium, or ammonium) to form bisulphites. Lockwood’s Directory) the distribution of pulp mills in Ontario and Quebec was as follows: Mechanical processes produce the highest yield from the wood, but have high energy demands. Mechanical pulping Process Type generally incorporates thermal or chemical pre-softening Chemical Processes Semi-chemical Mechanical Total of the wood chips, resulting in lower energy requirements. Kraft Sulphite Some chemical processes include mechanical features. Ontario 94 2 15 30 The division is not distinct and is generally based on Quebec 10 8241 61 efficiency of production from dry wood. Figure 22.1: Number of pulp mills by type in Ontario and Quebec Figure 22.2 provides a flow diagram for a semi-chemical pulp mill. In chemical pulping, the wood chips are cooked, using heat and a chemical solution that depends on the type of Of the chemical processes , alkaline pulping – the kraft process being used. The lignin binder, a natural glue that or sulphite process – is the most common and is shown in holds the wood cells (fibres) together, is dissolved.
    [Show full text]
  • Manufacturing Pulp & Paper
    Pulp & Paper Manufacturing Application Note 1 Introduction Challenge The processes involved in manufacturing paper and paperboard can Gases that typically need to be monitored at a pulp and paper mill generally be divided into three steps: pulp making, pulp processing, are bleaching chemicals like chlorine (Cl2), chlorine dioxide (ClO2), and paper/paperboard production. Pulp can be defined as watery ozone (O3) or hydrogen peroxide (H2O2); oxygen (O2) from the fibrous substrate formed into paper sheets . delignification system; total reduced sulfur (TRS) such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), dimethyl sulfide (CH3)2S, Three major types of fibers are used to make pulp and paper and dimethyl disulfide (CH3)2S2 , primarily released from wood chip products: wood, secondary fibers (recycled fibers), and non-wood digestion, black liquor evaporation, and chemical recovery boiler fibers such as cotton, flax or hemp) . However, the majority of pulp processes; volatile organic compounds (VOCs) such as terpenes, and paper products are made from wood, and most wood mills use alcohols, methanol, acetone, and MEK from process chemicals that the Kraft pulping process . are mostly solvent sprays, and emissions from drying wet tissue and the water treatment process . Because Kraft mills represent the majority of the industry, this paper describes the processes at Kraft mills using wood, but also includes In addition, some plants also require gas detection for sulfur dioxide a general process overview for the other types of mills. (SO2), which is emitted in small amounts from the use of sodium hydrosulfite. Kraft, soda and sulfite mills all use chemicals in their pulping processes.
    [Show full text]
  • Flow Sheet Pulp and Paper Green Liquor / White Liquor Circuit
    WesTech’s Continuous Rotary Drum Filters provide a wide range of liquid-solids separation for many types of industrial processing flow sheets. They offer the operating flexibility to handle dewatering, washing, and filtration applications. Working with the customer, WesTech provides laboratory test data to assess process optimization, design, and sizing of the equipment supplied. WesTech Drum Filters are available up to 13.5 feet in diameter and 36 feet in length and are built for ease of operation as well as to meet demanding customer specifications. Pulp and Paper Dregs The most common process for making paper is called The dregs from the green liquor clarifier are sent to the Kraft or Kraft Mill process. In this process, wood a rotary vacuum filter called the “dregs filter.” Here chips are “cooked” at 150 - 165o C, under pressure the dregs are washed to remove residual chemicals in a liquid solution containing caustic (NaOH) and and are dewatered prior to disposal. The liquids are sodium sulphide (Na2S) to pulp the wood. recycled to the green liquor stabilization tank. White Liquor Slaker The solution of caustic and sodium sulfide is The clarified green liquor is fed to a “slaker” where referred to as “white liquor”. These chemicals, along NaOH is formed. The grit and unreacted lime settle with heat and pressure, release the lignin from the to the bottom where they are removed by means of fibers in the wood. The resulting “pulp” is washed, a screw conveyor. screened, and sent on to bleaching and becomes the feed stock for the paper-making process.
    [Show full text]
  • An Overview on the Pulp and Papermaking Process from Agroforestry Residues: a Biorefinery Approach
    AN OVERVIEW ON THE PULP AND PAPERMAKING PROCESS FROM AGROFORESTRY RESIDUES: A BIOREFINERY APPROACH F. Bimbela 1, F. Marín 2, J. Ábrego 3, I. Egüés 4, J. Labidi 4, A. Gonzalo 1* 1: Thermochemical Processes Group (GPT), Aragon Institute for Engineering Research (I3A), Zaragoza (Spain) 2: Straw Pulping Engineering S.L., Villanueva de Gállego (Zaragoza, Spain) 3: Hawai’i Natural Energy Institute, University of Hawai’i (Honolulu, HI-USA) 4: Department of Chemical and Environmental Engineering, University of the Basque Country, San Sebastián (Spain) *: e-mail: [email protected] Bioenergy III: Present and New Perspectives on Biorefineries Lanzarote (Spain), May 25th, 2011 Outline Introduction and Objectives Materials and Methods Results: – Pulping process – Hydrothermal treatment – Active carbons from lignin Conclusions Bioenergy III: Present and New Perspectives on Biorefineries – Lanzarote, May 2011 2 Outline Introduction and Objectives Bioenergy III: Present and New Perspectives on Biorefineries – Lanzarote, May 2011 3 Introduction and objectives There is a need for new sources of low-cost virgin fibers The manufacture of cardboard requires up to circa 20% of virgin fibers Around 45% of all raw materials used in the Spanish pulp and paper industry (ca. 3 millions of tonnes) are destined to cardboard production (*) As of 2009, Spain is the 6 th largest producer of pulp and paper (5.7 millions of tonnes) and the 4 th largest exporter of paper pulp in the EU (2.8 millions of tonnes), (top ten worldwide) (**) Alternative feedstocks must
    [Show full text]
  • Ref. 676.03 SMO 2Nd
    INDEX Refer to Chapter Refer to Chapter Refer to Chapter A test 14 acid pretreatment 10 acetate 4 acidproof brick 8 abaca 3 acetate laminating 18 acid pulping 8 abatement 20 acetate pulp 4 acid rain 21 odor 21 acetic acid 4 acid-refined tall oil 6 pollution 20 acetic anhydride 4 acid-resistant 14 abatement device 21 acetone 4 acid size 5 abietic acid 6 acetylated starch 5 acid-stable size 5 abrasion 24 acetyl radical 4 acid sulfite process 8 abrasion debarker I acetylating agent 4 acid tower 8 abrasion resistance 14 acid(s) 4, 8 acid treatment 10 abrasion test 14 abietic 6 acidulating 4 abrasive 7 acetic 4 acidulating agent 4 abrasive backing papers 16 accumulator 8 acidulation 6 abrasiveness 14 carbonic 20 acoustical board 16 abrasive segment 7 Caro's 10 acoustical testing 14 abrasivity (of mineral fillers) 13 cooking 8 acoustic leak detector 9 absorbency 11,14 digester 8 acre-foot 20 relative II fatty 6 acrylamide resins 5 water II formamidine sulfinic 10 acrylic binders 17 absorbent 14,24 formic 4 acrylic fiber 3 absorbent capacity II glucuronic 4 activatable chemical 9 absorbent grades 16 humic 20 activated carbon 20 absorption 5 hydroxy 4 activated sludge 20 capillary 13 hypochlorous 10 activated sludge loading 20 ink 14 lignosulfonic 8 activated sludge process 20 light 14 linoleic 6 activation 4 mechanical 13 mineral 4 surface II tensile energy 14 oleic 6 activation energy 8 vapor 13 pectic 4 Arrhenius 4 absorption coefficient 14 peracetic 10 activator 5 accelerated aging 14 raw 8 active alkali 8 accelerated aging test 14 resin
    [Show full text]
  • Contribution of Different Pretreatments to the Thermal Stability and UV Resistance Performance of Cellulose Nanofiber Films
    coatings Article Contribution of Different Pretreatments to the Thermal Stability and UV Resistance Performance of Cellulose Nanofiber Films Lianxin Luo 1,2, Xuchong Wang 1,2, Sheng Zhang 1,2, Xiaojun Yuan 1,2, Mingfu Li 3,4,* and Shuangfei Wang 1,2,* 1 College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; [email protected] (L.L.); [email protected] (X.W.); [email protected] (S.Z.); [email protected] (X.Y.) 2 Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China * Correspondence: [email protected] (M.L.); [email protected] (S.W.) Abstract: Hot water (HW), green liquor (GL), and sodium chlorite (SC) pretreatments were used to pretreat sugarcane bagasse (SCB) and spruce (SP) and then to prepare cellulose nanofibers (CNFs) through high-pressure homogenization to explore the effect of physicochemical properties on the thermal stability and ultraviolet (UV) resistance performance of CNF films. The results indicated that the lignin content of HW-pretreated CNFs was higher than that of GL- and SC-pretreated CNFs, and the hemicellulose content of HW-pretreated CNFs was lower than that of GL- and Citation: Luo, L.; Wang, X.; Zhang, SC-pretreated CNFs. The synergy of lignin and hemicellulose impacted the thermal stability of S.; Yuan, X.; Li, M.; Wang, S. CNF films. The thermal stability of all the SP CNF films was higher than that of all the SCB CNF Contribution of Different films.
    [Show full text]