coatings Article Contribution of Different Pretreatments to the Thermal Stability and UV Resistance Performance of Cellulose Nanofiber Films Lianxin Luo 1,2, Xuchong Wang 1,2, Sheng Zhang 1,2, Xiaojun Yuan 1,2, Mingfu Li 3,4,* and Shuangfei Wang 1,2,* 1 College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
[email protected] (L.L.);
[email protected] (X.W.);
[email protected] (S.Z.);
[email protected] (X.Y.) 2 Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China * Correspondence:
[email protected] (M.L.);
[email protected] (S.W.) Abstract: Hot water (HW), green liquor (GL), and sodium chlorite (SC) pretreatments were used to pretreat sugarcane bagasse (SCB) and spruce (SP) and then to prepare cellulose nanofibers (CNFs) through high-pressure homogenization to explore the effect of physicochemical properties on the thermal stability and ultraviolet (UV) resistance performance of CNF films. The results indicated that the lignin content of HW-pretreated CNFs was higher than that of GL- and SC-pretreated CNFs, and the hemicellulose content of HW-pretreated CNFs was lower than that of GL- and Citation: Luo, L.; Wang, X.; Zhang, SC-pretreated CNFs. The synergy of lignin and hemicellulose impacted the thermal stability of S.; Yuan, X.; Li, M.; Wang, S. CNF films. The thermal stability of all the SP CNF films was higher than that of all the SCB CNF Contribution of Different films.