The Mechanics of Clastic Intrusion: Implications for Deep Water Clastic Reservoirs1

Total Page:16

File Type:pdf, Size:1020Kb

The Mechanics of Clastic Intrusion: Implications for Deep Water Clastic Reservoirs1 THE MECHANICS OF CLASTIC INTRUSION: IMPLICATIONS FOR DEEP WATER CLASTIC RESERVOIRS1 Lidia Lonergan, and Richard J.H, Jolly* T.H. Huxley School, Imperial College, London, UK *Now at Golder Associates UK Ltd, Maidenhead, England [email protected] intrusions. However, our work suggests that large-scale Abstract (several hundred metre) sandstone intrusions within Several productive Paleogene deep water sand- Paleogene deep marine successions of the North Sea, stone reservoirs in the North Sea (e.g. Alba, Forth/ require the presence of fluids migrating from deeper Harding, Balder, Gryphon) show evidence of having within the basin (e.g. gas charge) to drive the injection. undergone major post-depositional remobilisation and clastic injection, which can result in disruption of pri- mary reservoir distribution. Remobilization features, Introduction range from centimetres (e.g. core-scale) to hundreds of metres (e.g. seismic-scale). The scale of the clastic in- Cubic-kilometre sized clastic intrusions and remo- trusion and remobilisation has significant impact on res- bilized sandstones are increasingly recognised as an ervoir architecture and production performance, includ- important component of the deepwater play within the ing changes in (a) original depositional geometries; (b) latest Paleocene and early Eocene of the North Sea ba- reservoir properties; (c) connectivity, (d) top reservoir sin. Sediment deformation and intrusion are not just lo- surface structure, (e) reservoir volumetrics, and (f) re- calized processes which have affected one or two fields covery/performance predictions. in the North Sea, but within the late Paleogene interval, There are two prerequisites for sandstone in- remobilization and intrusion of sands has directly af- trusions to form: the source sediment must be fected the identification, definition, and understanding uncemented, and the ‘parent’ sand body must be sealed of at least 10 important hydrocarbon reservoirs and pros- 2 such that an overpressure with a steep hydraulic gradi- pects within an area of ~500,000 km in the Central and ent can be generated. The seal on an overpressured sand Northern North Sea (e.g. Forth/Harding, Alba, Balder, must then be breached for the sand to fluidize and in- Gryphon fields; Alexander et al. 1993; Jenssen et al., ject. The stress state within the basin, burial depth, fluid 1993; Newman et al. 1993; Newton & Flanagan, 1993; pressure and the nature of the sedimentary host rock all Timbrell, 1993; Dixon et al. 1995; Lonergan & contribute to the final style, geometry and scale of in- Cartwright, 1999; Lawrence et al. 1999; MacLeod et al. trusion. At shallow depths, within a few meters of the 1999). Figure 1 illustrates an example of a kilometer – surface, small irregular intrusions are generated, more scale intrusion, consisting of a dike and sill imaged on commonly forming sills, whereas at depth dikes and sills 3D seismic data within Eocene strata, from the North- form clastic intrusion networks. We use field examples ern North Sea. The intrusion cross-cuts 200 m of stratig- from the western Ireland, and Santa Cruz and Panoche raphy, and the presence of sand in this intrusion has been Hills in California to illustrate the control of burial depth/ verified by drilling. (More examples of both core, and stress on intrusion scale. The cohesivity of the host sedi- seismic-scale intrusions from the North Sea are described ment, and the flow velocity of the intruding sands ap- in Lonergan et al. submitted). pears to control whether the intrusion is emplaced by Traditionally, the approach adopted when interpret- stoping (the incorporation of host rock material as rafts ing Tertiary deep-water sandstone reservoirs in the North in the intrusion), or dilation (the forceful pushing apart Sea, has been to assume that the current reservoir ge- of the host rock to create space), resulting in diverse ometry and heterogeneity is largely a function of an origi- styles of intrusive geometry. nal primary depositional origin. We argue, that there is Earthquake induced liquefaction, tectonics and now a mounting body of evidence which suggests that build up of excess in situ pore pressure are the most com- this paradigm be reassessed and that in other deepwater monly cited explanations for the occurrence of clastic settings, the possibility that observed sandstone geom- etries might be a function of post-depositional 1This contribution includes material from two papers currently in review: Jolly, R.J.H. & Lonergan, L. The mechanisms of clastic sill and dike intrusion,, GSA Bull. and Lonergan, L. et al. Remoblisation and Injection in Deepwater Depositional Systems- Implications for reservoir architecture and prediction, GSSEPM- Deep Water Reservoirs of the World Conference Publication Stanford Rock Fracture Project Vol. 11, 2000 C-1 Dyke Balder Marker Sill SAND 100 m ~1 km Figure 1. Seismic section illustrating a kilometer-scale dike and sill complex in the North Sea, within Eocene strata. remobilisation, needs to be evaluated. To further 2a): Remobilisation leads to fundamental understand and predict geometries of intrusions changes in reservoir architecture e.g. that form in deepwater sedimentary environments steepening of original depositional geom- we need an improved theoretical basis from which etries (e.g. Balder Field, Jenssen et al. to consider the process of clastic intrusion and 1993; Rye-Larsen, 1994), development of the resultant geometries. The mechanical control pod-like sandbodies (e.g Balder and Alba on intrusion geometry, size and intrusion mecha- Fields), intrusion of clastic dikes and sills nism is the main topic of this paper. above the reservoir (e.g. Forth/Harding, Frigg, Gryphon and Alba Fields; Dixon et al., 1995; Newman et al. 1993; Newton & Remobilisation and the effects on res- Flanagan, 1993) and laterally along the reservoir margins (e.g. Alba Field, ervoir geology Lonergan & Cartwright, 1999; MacLeod As a direct result of remobilisation and injec- et al. 1999). tion, many of the North Sea Paleogene reservoirs (b) Changes in reservoir properties (Figure have complex geometries. This, coupled with their 2b): Remobilization often homogenizes subtle expression on seismic data, and with their reservoir properties (e.g. by clay lack of primary depositional characteristics com- elutriation) and eliminates original sedi- bine to make them challenging prospects for ex- mentary structures leading to a massive ploration and appraisal. Sand remobilisation pro- sandstone facies. These facies are often cesses can affect reservoir geology in a number considered an original depositional facies of ways: and then interpreted as the deposits of ei- (a) Changes in reservoir architecture (Figure ther sandy grainflows or debris flows. C-2 Stanford Rock Fracture Project Vol. 11, 2000 A. Change in reservoir geometry B. Change in reservoir properties Massive blocky sandstone intra-reservoir shales Channelised No internal turbiditic sandstones clay breaks C. Change in connectivity Dike OWC Sill Isolated channel sands D. Change in top reservoir surface & in reservoir volumetrics Producer No Yes OWC OWC Figure 2. Schematic diagram illustrating the potential effects of clastic intrusion and remobilization on reservoir geol- ogy. (c) Change in connectivity of originally iso- bedding (sills) (Figure 3). Jolly and Lonergan (sub- lated reservoirs (Figure 2c): Clastic intru- mitted) review the extensive published literature sions alter the transmissivity of the reser- spanning a century and more, on the occurrence voir and connectivity between previously of clastic dikes and sills. While clastic intrusions isolated reservoir units can be established. have been documented from all depositional en- Vertical or steeply dipping dikes will not vironments, they have been most frequently re- be imaged on seismic data, so connectiv- corded in deepwater depositional settings. Clas- ity between apparently separate sand bod- tic intrusions documented in outcrop are typically ies may not be evident. small, rarely reaching tens of metres thickness in (d) Changes in top reservoir surface and in dimension, but have never been observed at the reservoir volumetrics (Fig 2d) (e.g. Alba scale of those interpreted from seismic data in the Field, MacLeod et al., 1999). North Sea. The largest known outcrop examples occur within tectonically active basins, such as the large oil-bearing intrusions exposed near Santa Clastic injection and intrusion trigger- Cruz in California within the Miocene Santa Cruz mudstone (see Thompson et al. 1999 for a recent ing mechanisms description) in the Santa Cruz/La Honda strike slip The emplacement of remobilised clastic sedi- basin along the San Andreas fault, or from thrust ment into the surrounding strata, can either form belt/accretionary prism settings (e.g. Winslow tabular bodies of sediment that are discordant to 1983; Scott, 1966) bedding (dikes), or sheets largely concordant with The majority of previously published work Stanford Rock Fracture Project Vol. 11, 2000 C-3 m. (see references cited in Obermeier 1996). Thus, ? ? when considering earthquake liquefaction as a sill length potential trigger for clastic intrusion it is impor- T tant to consider the scale of the intrusion, the depth Step at which the intrusions formed, and the likelihood dyke that earthquakes greater than magnitude 5 may height Jog w L have occurred at the time of intrusion (i.e. was the basin in an active plate tectonic setting?). Source bed Fluid- induced liquefaction, where the fluid is not the in-situ pore fluid, but migrates into the sealed sand body from elsewhere in the basin, has rarely been cited as a mechanism for triggering Figure 3 Diagram illustrating principle features of clas- clastic intrusions. Jenkins (1930) recognised that tic sills and dikes intruded in the subsurface. W= dike the migration of hydrocarbon fluids potentially width, L= dike length (strike length if exposed in out- played an important role in the formation of the crop), T= sill thickness. Note the blunt termination at large number of dikes found in the oil-producting one end of the illustrated sill and the thin fingers (2D); basin of California. Thompson et al. (1999) sug- sheets (3D) at the other end.
Recommended publications
  • Geochemical Study of Lower Eocene Volcanic Ash Layers from the Alpine Anthering Formation, Austria
    Geochemical Journal, Vol. 37, pp. 123 to 134, 2003 Geochemical study of lower Eocene volcanic ash layers from the Alpine Anthering Formation, Austria HEINZ HUBER,1,2 CHRISTIAN KOEBERL1* and HANS EGGER3 1Institute of Geochemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 2Atominstitut, Technical University of Vienna, Stadionallee 2, A-1020 Vienna, Austria 3Geological Survey of Austria, Rasumofskygasse 23, A-1031 Vienna, Austria (Received May 30, 2002; Accepted September 3, 2002) Samples of bentonite layers from altered volcanic ash layers of the Anthering Formation in Salzburg, Austria, which most likely covers the Paleocene/Eocene boundary, were analyzed for their chemical com- position. The results of the major and trace element determination confirm the previously suggested ap- pearance from at least two different primary localities. One sample has low abundances in TiO2 and Ir (0.77 wt.% and 47 ± 16 ppt, respectively), whereas all others have iridium concentrations between 200– 450 ppt. On the basis of the chemical composition the bentonite layers are distant equivalents of coeval ash deposits from the Fur and Balder Formation in Denmark and the North Sea, respectively, as was sug- gested from petrological and mineralogical investigations. be assigned to represent the Paleocene/Eocene- INTRODUCTION boundary, because marine and terrestrial sections The Rhenodanubian Flysch zone comprises an can be correlated by this excursion; however, up imbricated thrust pile trending parallel to the to now the Paleocene/Eocene-boundary still awaits northern margin of the Eastern Alps. The flysch a clear definition (see Aubry, 2000, for a review). sediments (Barremian–Ypresian) were deposited The 250 m thick deposits of the Anthering sec- in an abyssal environment at the northwestern tion are composed of carbonate-bearing mud- Tethyan margin (Egger et al., 2002).
    [Show full text]
  • Sand Injectites: Implications for Hydrocarbon Exploration and Production
    Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3815910/9781629810072_frontmatter.pdf by guest on 25 September 2021 Sand Injectites: Implications for Hydrocarbon Exploration and Production Edited by Andrew Hurst Joseph Cartwright AAPG Memoir 87 Published by The American Association of Petroleum Geologists Tulsa, Oklahoma Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3815910/9781629810072_frontmatter.pdf by guest on 25 September 2021 Copyright © 2007 By the American Association of Petroleum Geologists All Rights Reserved ISBN: 978-0-89181-368-2 0-89181-368-3 AAPG grants permission for a single photocopy of an item from this publication for personal use. Authorization for additional copies of items from this publication for personal use is granted by AAPG provided that the base fee of $3.50 per copy and $.50 per page is paid directly to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, Massachusetts 01923 (phone: 978/750-8400). Fees are subject to change. AAPG Elected Editor: Ernest A. Mancini Geoscience Director: James B. Blankenship On the cover: A strike section (bedding appears approximately horizontal) through the Tierra Loma Shale Member (Upper Cretaceous) of the Moreno Formation (Upper Cretaceous to Lower Paleocene) from Marca Canyon, near Firebaugh, California, U.S.A. All sandstones (pale colors) are dikes from the Panoche Giant Injection Complex and, in this section, are from the upper part of the intrusive complex where dikes dominate. The thickest dike is approximately 5 m (16 ft) thick. Approximately 60 m (197 ft) of stratigraphic section is present in the foreground cliff. Dikes con- tinue in the overlying section for a further 250 m (820 ft) where they terminate close to a paleoseafloor on which sand extrudites and cold carbonate seep communities occur (see Chapter 16 of this volume).
    [Show full text]
  • Large Scale Deepwater Sediment Remobilisation : Examples from North Sea 3D Seismic and Outcrop S.J.M
    Large scale deepwater sediment remobilisation : examples from North Sea 3D seismic and outcrop S.J.M. Molyneux 1; J.A. Cartwright2 and L Lonergan, T.H.Huxley School, Imperial College, London, UK. 1PanCanadian Petroleum Ltd, Calgary. 2Department of Earth Sciences, Cardiff University, Cardiff, Wales The Palaeocene/Eocene to Mio-Pliocene sediments of the Central and Northern North Sea contain deepwater sediments with significant hydrocarbon reserves within submarine fan sands encased in mudrocks. Post depositional processes have significantly changed the original small and large scale geometry and reservoir characteristics of these deepwater sediments. Examples of large scale remobilisation from 3D seismic, well and core data from the above intervals vary from cross cutting 10’s of metres thick and 100’s of metres in extent intrusions of sands, kilometer scale seabed pockmarks, sand mounds with kilometre wavelengths deposited between a mud mounded sea floor and syn to post depositional controlled polygonally faulted deepwater sands. Outcrop analogues of large scale remobilisation are difficult to identify as the scale of these sandstone intrusion is often larger than the outcrop available. Within Upper Miocene Santa Cruz Mudstone, Santa Cruz, California exist one of only two kilometre scale sandstone intrusion complexes in the world. The intrusion of these sands is postulated to have been related to the expulsion of basinal fluids including hydrocarbons and related overpressure build ups, as proposed for several of the intrusive examples above in the Tertairy of the North Sea. The geoscientist should be aware of the small to very large scale nature of sediment remobilisation which can significantly change primary depositional geometries and physical properties of deepwater sediments.
    [Show full text]
  • Lower Neogene Succession of the Danish North Sea
    GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 12 · 2007 Lithostratigraphy of the Palaeogene – Lower Neogene succession of the Danish North Sea Poul Schiøler, Jan Andsbjerg, Ole R. Clausen, Gregers Dam, Karen Dybkjær, Lars Hamberg, Claus Heilmann-Clausen, Erik P. Johannessen, Lars E. Kristensen, Iain Prince and Jan A. Rasmussen GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF THE ENVIRONMENT 1 Geological Survey of Denmark and Greenland Bulletin 12 Keywords Lithostratigraphy, biostratigraphy, North Sea Basin, Palaeogene, Neogene. Cover Complex fabric created by multiple small-scale sand intrusions (light) into dark mudstones – such enigmatic fabrics are commonly associated with the sand-rich units of the Rogaland Group in the Siri Canyon area, offshore Denmark. The illustrated section of core is about 10 cm across and is from the lower Tyr Member (Lista Formation) in the Cecilie-1B well (2346.8 m). Photograph: Jakob Lautrup. Chief editor of this series: Adam A. Garde Editorial board of this series: John A. Korstgård, Geological Institute, University of Aarhus; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen Scientific editors of this volume: Jon R. Ineson and Martin Sønderholm Editorial secretaries: Jane Holst and Esben W. Glendal Referees: Paul van Veen (Norway) and Robert O’B. Knox (UK) Illustrations: Stefan Sølberg Digital photographic work: Benny M. Schark Graphic production: Knud Gr@phic Consult, Odense, Denmark Printers: Schultz Grafisk, Albertslund, Denmark Manuscript received: 29 August 2005 Final version approved: 8 September 2006 Printed: 29 June 2007 ISSN 1604-8156 ISBN 978-87-7871-196-0 Geological Survey of Denmark and Greenland Bulletin The series Geological Survey of Denmark and Greenland Bulletin replaces Geology of Denmark Survey Bulletin and Geology of Greenland Survey Bulletin.
    [Show full text]
  • Second Licensing Round on the Faroese Continental Shelf
    Enhancing the prospectivity of the Wyville Thomson Ridge Kevin Smith, Patrick Whitley, Geoffrey S. Kimbell, Martin Kubala and Howard Johnson Føroya Kolvetni (Faroe Petroleum) was awarded Licence 012, covering part of the Wyville Thomson Ridge, in the second Faroese Licensing Round and this paper summarises some initial results from their work programme. Interest in the prospectivity of the Wyville Thomson Ridge was stimulated in the 1990s by a proposal that it forms a compressional anticline with a thin carapace of Paleogene lavas, overlying an inverted sedimentary basin. Gravity interpretation confirms that the ridge can be modelled as an inverted basin, although uncertainties inherent in the method limit the accuracy of the thickness estimates. Seismic reflection data shot in 2005 provide improved resolution of the pre-lava succession, with some reflector packages resembling seismic facies from the prospective Paleocene succession in the Faroe-Shetland Basin. The Rannvá exploration lead consists of an extremely large four-way dip closure beneath thin lavas at the crest of the Wyville Thomson Ridge. Source rock presence and maturity, hydrocarbon migration, and reservoir development in the Licence 012 area are discussed on the basis of regional observations. 1 Smith et al. This prospectivity assessment of licensed acreage in the Faroese sector of the north-east Atlantic margin focuses upon the Wyville Thomson Ridge, a linear bathymetric high mantled by volcanic rocks, which forms a physical barrier between the Rockall Trough and the Faroe- Shetland Channel (Morton et al. 1988b; Stoker et al. 1988; Earle et al.1989) (Fig.1). In the vicinity of the median line, a buried transfer zone probably underlies the whole structure (Rumph et al.
    [Show full text]
  • The Geology Behind Drilling Incidents Within the Balder Formation Around the Corona Ridge, West of Shet
    1 Raiders of the Lost Mud: The geology behind drilling incidents within the Balder 2 Formation around the Corona Ridge, West of Shetland 3 Douglas Watson1, Nick Schofield1*, Alistair Maguire2, Christine Telford3, Niall Mark1, Stuart Archer4, 4 & Jonathon Hardman1 5 1 Department of Geology & Petroleum Geology, University of Aberdeen, Aberdeen, AB24 3UE, UK 6 2 Schlumberger, Peregrine Road, Elrick, Westhill, AB32 6TJ, UK 7 3 CTC Geo Ltd, 176 Portland Road, Jesmond, Newcastle Upon Tyne, NE2 1DJ 8 4 MÆRSK OLIE OG GAS A/S, a Company of TOTAL, Amerika Plads 29, 2100 Copenhagen Ø, Denmark 9 * Correspondence: [email protected] 10 11 Abstract: The Faroe-Shetland Basin, NE Atlantic continental margin, hosts a number of important 12 hydrocarbon fields, though deep water and narrow weather windows mean drilling costs are 13 considerably higher than other parts of the UK Continental Shelf. Any additional drilling complications 14 are therefore important to predict and negate as such issues can result in avoidable multi-million pound 15 cost implications. This study focuses on the Corona Ridge, an intra-basinal high which contains the 16 Rosebank Field, where a plethora of drilling issues, of enigmatic origin, are common within a key 17 stratigraphic marker known as the Balder Formation. Drilling fluid loss, bit balling, wellbore breakouts, 18 and wellbore “ballooning”, where lost drilling fluid returns to the wellbore, are all recognised within 19 the Balder Formation along the Corona Ridge. We find that many of the drilling incidents can be traced 20 back to both the lithological character of the Balder Formation, and the mid-Miocene tectonic 21 inversion of the Corona Ridge.
    [Show full text]
  • Stratigraphical Chart of the United Kingdom: Northern Britain
    STRATIGRAPHICAL CHART OF THE UNITED KINGDOM: NORTHERN BRITAIN 1 2 3 4 5 6 7 8 9 10 11 12 BGS Geological Time Chart North-west Approaches/ Northern Isles Northern North Sea Northern Highlands Western Isles & Grampian Midland Valley Central North Sea South of Northern Isle of Man & Northern Hebrides Shelf Inner Hebrides Highlands of Scotland Scotland Ireland northern Irish Sea England Eon Era Series/ Stage/Age age (Ma) Period Epoch System/ Sub-era 0.01 Holocene Late 0.13 Ulster Glacigenic Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Caledonia Glacigenic Group Group Caledonia Glacigenic Group Caledonia Glacigenic Group Britannia Britannia Britannia Britannia Britannia Britannia Britannia Britannia British Coastal British Coastal Catchments British Coastal British Coastal British Coastal British Coastal Benburb Group British Coastal British Coastal Catchments Catchments Catchments Catchments Catchments Catchments Catchments Mid Deposits Group Group Deposits Group Group Deposits Group Deposits Group Group Deposits Group Group Deposits Group Deposits Group Deposits Group Group Albion Group Albion Group Albion Group Albion Glacigenic Group Glacigenic Group Glacigenic Group Glacigenic Group The Geological Society 0.78 Pleistocene* nary Nordland Early Group Quater Scale: 1 cm = 0.5 Ma Compiled by C N Waters 1.8 Nordland Nordland Group Group Cartography by P Lappage L Gelasian Pliocene Residual Buchan Deposits Gravels Formation Piacenzian 2.6 Group 3.6 E Zanclean 5.3 BGS contributors: Messinian 7.2 L Tortonian Britannia M C Akhurst, C A Auton, R P Barnes, A J M Barron, M A E Browne, M T Dean, J D Floyd, M R Gillespie, 11.6 Brassington Cenozoic Serravallian Catchments Miocene M Langhian 13.6 Formation P M Hopson, M Krabbendam, A G Leslie, A A McMillan, D Millward, W I Mitchell, K Smith, D Stephenson, Neogene 16.0 Group P Stone, and C N Waters.
    [Show full text]
  • Lithostratigraphy of the Palaeogene–Lower Neogene Succession of The
    GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 12 · 2007 Lithostratigraphy of the Palaeogene – Lower Neogene succession of the Danish North Sea Poul Schiøler, Jan Andsbjerg, Ole R. Clausen, Gregers Dam, Karen Dybkjær, Lars Hamberg, Claus Heilmann-Clausen, Erik P. Johannessen, Lars E. Kristensen, Iain Prince and Jan A. Rasmussen GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF THE ENVIRONMENT 1 Geological Survey of Denmark and Greenland Bulletin 12 Keywords Lithostratigraphy, biostratigraphy, North Sea Basin, Palaeogene, Neogene. Cover Complex fabric created by multiple small-scale sand intrusions (light) into dark mudstones – such enigmatic fabrics are commonly associated with the sand-rich units of the Rogaland Group in the Siri Canyon area, offshore Denmark. The illustrated section of core is about 10 cm across and is from the lower Tyr Member (Lista Formation) in the Cecilie-1B well (2346.8 m). Photograph: Jakob Lautrup. Chief editor of this series: Adam A. Garde Editorial board of this series: John A. Korstgård, Geological Institute, University of Aarhus; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen Scientific editors of this volume: Jon R. Ineson and Martin Sønderholm Editorial secretaries: Jane Holst and Esben W. Glendal Referees: Paul van Veen (Norway) and Robert O’B. Knox (UK) Illustrations: Stefan Sølberg Digital photographic work: Benny M. Schark Graphic production: Knud Gr@phic Consult, Odense, Denmark Printers: Schultz Grafisk, Albertslund, Denmark Manuscript received: 29 August 2005 Final version approved: 8 September 2006 Printed: 29 June 2007 ISSN 1604-8156 ISBN 978-87-7871-196-0 Geological Survey of Denmark and Greenland Bulletin The series Geological Survey of Denmark and Greenland Bulletin replaces Geology of Denmark Survey Bulletin and Geology of Greenland Survey Bulletin.
    [Show full text]
  • Akinsape Et Al
    Ife Journal of Science vol. 18, no. 3 (2016) 641 AN INTEGRATED STUDY OF THE LATE PALEOCENE TO EARLY EOCENE FLETT (T40/T45) AND BALDER (T50) FORMATIONS OF THE FLETT SUB-BASIN, FAROE-SHETLAND AREA, NORTH SCOTLAND. Akinsanpe, O. T.1 , Johnson, H. D.2 , Fadiya, S. L.1 and Benjamin, U. K.1 1Department of Geology, Obafemi Awolowo University, Ile-Ife, Nigeria. 2Department of Earth Science and Engineering, Imperial College, London. (Corresponding Author: [email protected]; Tel. No: 07050923593) (Received: 22nd Aug., 2016; Accepted: 2nd Oct., 2016) ABSTRACT 3D seismic and well data (wireline logs, biostratigraphic information and core photographs) were employed to evaluate the Late Paleocene - Early Eocene Flett (T40/T45) and Balder (T50) Formations with the aim of understanding their depositional setting within the Flett Sub-Basin, located offshore North of Scotland. The thicknesses of the formations varied across the basin, with the Flett and Balder Formations displaying thickness ranges of 0 - 800 m and 0 - 300 m respectively. The wireline signatures showed shale and sandstone as the main lithologies within these formations with volcanics observed in the shallower NE - SW part of the basin. The shales and sandstones of the Lower Flett Formation (T40) were believed to have been deposited on the slope within the deep marine environment during the relative sea level fall. The sediments of the Upper Flett Formation (T45) were deposited on the shallow marine shelf environment. The transition from slope deposit (T40) to shelf deposit (T45) was attributed to the effect of uplift in the Shetland area in the Early Paleocene time.
    [Show full text]
  • Remobilization and Injection in Deepwater Depositional Systems
    5HPREOL]DWLRQ DQG ,QMHFWLRQ LQ 'HHSZDWHU 'HSRVLWLRQDO 6\VWHPV ,PSOLFDWLRQV IRU 5HVHUYRLU $UFKLWHFWXUH DQG 3UHGLFWLRQ Lidia Lonergan Nick Lee Howard D. Johnson T.H. Huxley School of Environment Earth Sciences and Engineering Imperial College of Science Technology and Medicine Prince Consort London SW7 2BP UK [email protected] Joe A. Cartwright Department of Earth Sciences Cardiff University Cardiff CF1 3YE Wales Richard J.H. Jolly Golder Associates (UK) Limited First Floor, Clyde House Reform Road, Maidenhead Berkshire SL6 8BY UK $EVWUDFW ‘parent’ sand body must be sealed such that an overpres- sure with a steep hydraulic gradient can be generated. The Several productive Paleogene deepwater sandstone res- seal on the overpressured sand body must then be ervoirs in the North Sea show evidence of having breached for the sand to fluidize and inject. The stress undergone post-depositional remobilization and clastic state within the basin, burial depth, fluid pressure and the injection, which can result in major disruption of the pri- nature of the sedimentary host rock all contribute to the mary reservoir distribution (e.g., Alba, Forth/Harding, final style, geometry and scale of intrusion. At shallow Balder, and Gryphon fields). Case studies of deepwater depths, within a few meters of the surface, small irregular sandstones from UK Quadrants 9, 15, 16 and 21 are pre- intrusions are generated, more commonly forming sills, sented to illustrate the wide spectrum of remobilization whereas at greater depth larger and more continuous dikes features, which range from centimeters (e.g., core-scale) to and sills form clastic intrusion networks. Field examples hundreds of meters (e.g., seismic-scale).
    [Show full text]
  • NGU Report 2002.010
    NGU Report 2002.010 CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway Geological Survey of Norway N-7441 Trondheim, Norway Tel.: 47 73 90 40 00 Telefax 47 73 92 16 20 REPORT Report no.: 2002.010 ISSN 0800-3416 Grading: Open Title: CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway Authors: Client: Reidulv Bøe, Christian Magnus, Per Terje NGU, EU Osmundsen and Bjørn Ivar Rindstad County: Commune: Norway Map-sheet name (M=1:250.000) Map-sheet no. and -name (M=1:50.000) Deposit name and grid-reference: Number of pages: 132 Price (NOK): 295,- Map enclosures: 0 Fieldwork carried out: Date of report: Project no.: Person responsible: 1 September 2002 287300 Summary: The GESTCO (GEological STorage of CO2 from fossil fuel combustion) project comprises a study of the distribution and coincidence of thermal CO2 emission sources and location/quality of geological storage capacity in Europe. The GESTCO project is a joint research project conducted by 8 national geological surveys and several industry partners/end users, partly funded by the European Union 5th Framework Programme for Research and Development. Four of the most promising types of geological storage are being studied: 1) onshore/offshore saline aquifers with or without lateral seal, 2) low entalpy geothermal reservoirs, 3) deep methane-bearing coal beds and abandoned coal and salt mines, and 4) exhausted or near exhausted hydrocarbon structures. In this report, we present an inventory of CO2 point sources in Norway (1999) and the results of the work within Study Area C: deep saline aquifers offshore/near shore Northern and Central Norway.
    [Show full text]
  • The Tertiary of Norden
    1 1 by E. S. Rasmussen1, C. Heilmann-Clausen2, R. Waagstein1, and T. Eidvin3 The Tertiary of Norden 1 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. E-mail: [email protected] 2 Geological Institute of Aarhus, DK-8000 Århus C, Denmark. 3 Norwegian Petroleum Directorate, P.O. Box 600, N-4003 Stavanger, Norway. This chapter provides a lithostratigraphic correlation basalt volcanism occurred at the time of continental separation, as and the present knowledge of the depositional history of seen on the Faroe Islands. The collision between Greenland and Svalbard resulted in strong folding along the west-coast of Svalbard. the Tertiary succession of the Scandinavian countries. In the North Sea Basin, the limestone deposition that characterised The succession records an initial phase of carbonate the earliest Tertiary gave way to deposition of deep marine clays deposition in the early Paleocene. This was succeeded with intercalated sandy gravity flows (Figure 1). On Svalbard, a transgressional foreland basin accumulated coastal plain, shallow by deposition of deep marine clays with intercalation of marine and deepwater deposits. There was distinct uplift of the mar- sand-rich mass-flow deposits during most of the Pale- ginal areas of the Fennoscandian Shield in the Neogene and major ocene and Eocene. Volcanic activity in the North deltas and adjacent coastal plains prograded into the basins. Present Atlantic was extensive at the transition from the Paleo- Iceland formed from Middle Miocene to recent time by increased hot spot activity at the Mid-Atlantic spreading ridge. At the end of the cene to the Eocene resulting in widespread sedimenta- Tertiary, the Fennoscandian area was tilted towards the west tion of ash-rich layers in the North Sea area.
    [Show full text]