1 Introduction and Overview of Lime
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TAHITIAN LIME(Persian
TAHITIAN LIME (Persian Lime) Limes have many uses, including jams, jellies, marmalade and garnishing fish and other main dishes. The fruit is sold commercially as fresh fruit and also for processing although the Tahitian lime is preferred as fresh fruit because it is considered unsuitable for lime cordial products. The name “Tahitian” was given to the lime when the fruit was introduced from Tahiti to California. However, with the introduction of this variety into Australia in 1824 (possibly from Brazil) the fruit was then more commonly called the Persian lime. DESCRIPTION Large sized lime, generally 5 - 7 cm long and 4 - 6 cm in diameter. Colour of the fruit is green and pale lemon/yellow at maturity. The fruit has a distinct lime flavour and a moderate to high acidic level. The flesh at maturity is green and pulpy. Sold mainly as fresh fruit, Tahitian limes rarely have seeds and are excellent for growing in many areas of Australia. PRODUCTION OF LIME TREES Main crop harvest will vary with seasonal conditions and districts. January to March on the far North Coast areas. February to March on the Central Coast. April to July in cooler districts. The trees have little thorns and are moderately vigorous, growing from 2 to 4 metres high. Size depends on soil and rootstocks. Lime trees have the highest heat requirements of all citrus fruits and therefore grown in tropical or sub-tropical areas where better fruit quality is obtained. The trees grow continuously and are sensitive to cold. The Tahitian lime is slightly more cold resistant than other varieties, however frosts can damage both foliage and fruit. -
TRISTEZA the Worldwide Threat from Destructive Isolates of Citrus
TRISTEZA The Worldwide Threat from Destructive Isolates of Citrus Tristeza Virus-A Review C. N. Roistacher and P. Moreno ABSTRACT. This paper reviews the effects of extremely destructive forms of citrus tristeza virus (CTV) which poses serious threats to citrus industries worldwide. These include Capao Bonito CTV in Brazil, navel orange stem pitting CTV in Peru, stem pitting 12B CTV found in the university orchards in Southern California, severe grapefruit stem pitting CTV found in South Africa, recent forms of CTV responsible for decline of sweet orange on sour orange rootstock in Florida and Israel and other severe CTV isolatesreported from Spainand elsewhere. Many ofthesedestructive CTVisolates are transmitted by Toxoptera citricidus but most can be transmitted by Aphis gossypii at relatively high levels of efficiency. The impact of recent changes in aphid transmissibility and population dynamics, and the threat of movement of T. citricidus into new regions of the world are reviewed. The appearance and impact of new strains or mutants of CTV differing in pathogenic capacities or in aphid transmissibility are discussed. Methods for the identification of new or destructive isolates of CTV are also reviewed. Concepts for prevention which include quarantine, eradication and education are presented. The immediate need is to test for presence of CTV in those countries where sour orange is the predominant rootstock. Also, to test for and eliminate very destructive forms of CTV, to strengthen quarantine laws and regulations, and to educate scientists, nurseryman and growers to the dangers involved in budwood importation and virus or vector spread. Tristeza, caused by the citrus ravages of tristeza once it begins to tristeza virus (CTV) remains today as spread. -
Cuisinart® Juice Extractor CJE-1000
INSTRUCTION BOOKLET Cuisinart® Juice Extractor CJE-1000 For your safety and continued enjoyment of this product, always read the instruction book carefully before using. 16. The appliance is wired for domestic use only. IMPORTANT 17. Do not use the appliance for anything other than the intended purpose, as outlined SAFEGUARDS in the instruction booklet. When using any electrical appliance, basic safety precautions should always be followed, including 18. Never juice with the spout in the closed position. the following: 19. Do not operate without the pulp container 1. READ INSTRUCTIONS THOROUGHLY in place. 2. Always unplug unit from outlet when not in 20. Do not operate your appliance in an appliance use, before putting on or removing parts garage or under a wall cabinet. When storing in and before cleaning. an appliance garage always unplug the unit from the electrical outlet. Not doing so could 3. To protect against electrical shock, do not create a risk of fire, especially if the appliance immerse the juice extractor motor housing in touches the walls of the garage or the door water or other liquids. touches the unit as it closes. 4. When any appliance is used by or near children, supervise closely. 5. Avoid contact with moving parts. SAVE THESE 6. If the juice extractor has a damaged cord or INSTRUCTIONS plug or malfunctions, DO NOT OPERATE. Contact our Customer Service Center to return for examination, repair or adjustment. HOUSEHOLD USE ONLY 7. Using accessory attachments not sold or recommended by the manufacturer can cause No user-serviceable parts are inside. Do not fire, electric shock or injury. -
New Acid Citrus Selections for Florida
New acid citrus selections for Florida Lemon and lime-like selections with niche market potential are being developed with biotechnology at the University of Florida. By Jude Grosser, Zenaida Viloria and Manjul Dutt re you ready for a purple margarita? Would you like a fragrant, juicy lime is a naturally occurring citrus lemon for your iced tea with no seeds to clog your straw or dishwasher triploid, which is why it is seedless. drain? How about some seedless lime trees that are cold-hardy enough The new seedless watermelons in the Afor Central Florida? These and many more interesting acid-citrus marketplace are also triploids. selections are now on the horizon, including some with good ornamental potential. Due to the fact that new and This article will focus on progress in using emerging biotechnologies to develop improved citrus cultivars must be interesting new citrus cultivars in the lemon and lime group. Cultivars include seedless to compete in the national some that will not have regulatory constraints, and also a genetically modified and international marketplace, the organism (GMO)-derived purple Key lime as a teaser for the future. University of Florida’s Citrus Research and Education Center (UF/CREC) LEARNING FROM they are triploids. People and most citrus improvement team (working THE BANANA citrus trees are diploid, meaning with Fred Gmitter) has formulated Have you ever wondered why you there are two sets of chromosomes in several ways to create triploids as a key never find seeds in your bananas? Did each cell. Triploid bananas have three method of developing seedless citrus you know that there are wild-type sets of chromosomes per cell. -
Spicy Grapefruit Margarita. the RECIPE
THE RECIPE spicy grapefruit margarita. By halfbakedharvest I swear I have found the perfect amount of tequila, to lime juice, to fruity mixer for margs prep time 10 minutes total time 10 minutes servings 6 drinks 4.47 from 39 votes calories 207 kcal INGREDIENTS BIG BATCH MARGARITAS 1 1/2 cups silver tequila 12 ounces 2 cups grapefruit juice 16 ounces 3/4 cups fresh lime juice 1/4 cup agave nectar may also use honey 1-2 whole jalapeños halved (depending on how spicy you want your drink) slices lime + grapefruit for serving TO MAKE JUST ONE DRINK 1 1/2 - 2 ounces silver tequila 2 1/2 ounces grapefruit juice 1 ounce fresh lime juice 1 tablespoon agave nectar or more to taste 1-2 slices jalapeno depending on how spicy you want your drink slices lime + grapefruit for serving SPICY CHILI SALT RIM 1 tablespoon chili powder 1 tablespoon kosher salt 2 teaspoons granulated sugar INSTRUCTIONS SPICY CHILI SALT RIM In a bowl, combine the chili power salt and sugar. Mix well to combine. Use this mixture to rim your glasses. BIG BATCH MARGARITA Combine all the ingredients in a pitcher and stir to combine. Keep chilled in the fridge for 1-3 hours. Taste the drink every hour to check for spiciness. The longer you leave the jalapeño in the drink the spicier the drink will become. Once the drink is spiced to your liking, remove the jalapeños. When ready to serve, salt the rims of 4-6 glasses. Add ice to each glass and pour the margaritas over the ice. -
Household Juice Extractor Comparison and Optimization
cess Pro ing d & o o T F e c f h o n l o a l n o Journal of Food Processing and r g u y o J ISSN: 2157-7110 Technology Research Article Household Juice Extractor Comparison and Optimization Michael Donaldson* Hallelujah Acres, Zillah, WA, USA ABSTRACT Background: Increased vegetable consumption is a cornerstone of improving personal dietary habits and meeting national dietary guidelines. Vegetable juice is a beneficial way to increase vegetable consumption. Aim: The aim was to scientifically compare six different juicers for quantity and quality of juice yield for a variety of produce. Method: Six juicers (Green Star Elite, Champion, NuWave vertical auger, LaLane centrifugal, Norwalk, Pure) were tested side by side for the production of carrot, apple, celery, spinach and a combination juice of carrot, celery, spinach, and lemon. Yields of 1 kg batches were measured four times for each combination of produce and juicer. The quality of juice was measured by testing a panel of enzyme activities in each juice. Enzyme activity of carrot and combination juices during storage up to 72 hours was also measured. Results: The Pure Juicer had the highest yields on all types of products tested, followed by the Norwalk and Green Star Elite, then the Champion, NuWave and LaLane juicers. The Pure Juicer and Norwalk both did significantly better at producing pure spinach juice than any other juicer. The Champion juicer had yields that were very similar to the Green Star Elite for carrots and combination juices. Enzyme activity was very comparable in all of the juicers. -
R09 SI: Thermal Properties of Foods
Related Commercial Resources CHAPTER 9 THERMAL PROPERTIES OF FOODS Thermal Properties of Food Constituents ................................. 9.1 Enthalpy .................................................................................... 9.7 Thermal Properties of Foods ..................................................... 9.1 Thermal Conductivity ................................................................ 9.9 Water Content ........................................................................... 9.2 Thermal Diffusivity .................................................................. 9.17 Initial Freezing Point ................................................................. 9.2 Heat of Respiration ................................................................. 9.18 Ice Fraction ............................................................................... 9.2 Transpiration of Fresh Fruits and Vegetables ......................... 9.19 Density ...................................................................................... 9.6 Surface Heat Transfer Coefficient ........................................... 9.25 Specific Heat ............................................................................. 9.6 Symbols ................................................................................... 9.28 HERMAL properties of foods and beverages must be known rizes prediction methods for estimating these thermophysical proper- Tto perform the various heat transfer calculations involved in de- ties and includes examples on the -
Lime (Citrus Aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect
foods Article Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect Li-Yun Lin 1,*, Cheng-Hung Chuang 2 , Hsin-Chun Chen 3 and Kai-Min Yang 4 1 Department of Food Science and Technology, Hungkuang University, Taichung 433, Taiwan 2 Department of Nutrition, Hungkuang University, Taichung 433, Taiwan 3 Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan 4 Department of Hospitality Management, Mingdao Unicersity, ChangHua 523, Taiwan * Correspondence: [email protected]; Tel.: +886-33-432-793 Received: 19 July 2019; Accepted: 2 September 2019; Published: 7 September 2019 Abstract: Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC50 values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats (p < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver. -
Tropical Horticulture: Lecture 32 1
Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g. -
Citrus Canker in California
Ex ante Economics of Exotic Disease Policy: Citrus Canker in California Draft prepared for presentation at the Conference: “Integrating Risk Assessment and Economics for Regulatory Decisions,” USDA, Washington, DC, December 7, 2000 Karen M. Jetter, Daniel A. Sumner and Edwin L. Civerolo Jetter is a post-doctoral fellow at the University of California, Agricultural Issues Center (AIC). Sumner is director of AIC and a professor in the Department of Agricultural and Resource Economics, University of California, Davis. Civerolo is with the USDA, Agricultural Research Service and the Department of Plant Pathology, University of California, Davis. This research was conducted as a part of a larger AIC project that dealt with a number of exotic pests and diseases and a variety of policy issues. Ex ante Economics of Exotic Disease Policy: Citrus Canker in California 1. Introduction This paper investigates the economic effects of an invasion of citrus canker in California. We consider the costs and benefits of eradication under alternatives including the size of the infestation, whether it occurs in commercial groves or in urban areas, and various economic and market conditions. The impacts of various eradication scenarios are compared to the alternative of allowing the disease to become established again under various conditions, including the potential for quarantine. We do not consider here the likelihood of an infestation or the specifics of exclusion policies. Rather we focus on economic considerations of eradication versus establishment. 2. A background on the disease, its prevalence, and spread Citrus canker is a bacterial disease of most commercial Citrus species and cultivars grown around the world, as well as some citrus relatives (Civerolo, 1984; Goto 1992a; Goto, Schubert 1992b; and Miller, 1999). -
Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Relatives
Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives Clémentine Baccati, Marc Gibernau, Mathieu Paoli, Patrick Ollitrault, Félix Tomi, François Luro To cite this version: Clémentine Baccati, Marc Gibernau, Mathieu Paoli, Patrick Ollitrault, Félix Tomi, et al.. Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives. Plants, MDPI, 2021, 10 (6), pp.1117. 10.3390/plants10061117. hal-03262123 HAL Id: hal-03262123 https://hal.archives-ouvertes.fr/hal-03262123 Submitted on 16 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Chemical variability of peel and leaf essential oils in the Citrus subgenus Papeda (Swingle) and relatives Clémentine Baccati 1, Marc Gibernau 1, Mathieu Paoli 1, Patrick Ollitrault 2,3, Félix Tomi 1, * and François Luro 2 1 Université de Corse-CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (C.B.) ; [email protected] (M.G.) ; [email protected] (M.P.) ; [email protected] (F.T.) 2 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro – 20230, San Giuliano, France 3 CIRAD, UMR AGAP, F-20230 San Giuliano, France * Correspondence: [email protected]; tel.:+33-495-52-4122. -
Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida
Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida Prepared: November, 2001 General Production Information ● Lime in this crop profile refers to the 'Tahiti' lime (Citrus latifolia). Pest management practices of other members of the Rutaceae such as Key lime (Citrus aurantifolia), pummelo (Citrus grandis), and kumquat (Fortunella sp.) may also be described, since survey questionnaires grouped these four tropical fruits together. All of these species of citrus are grown for the fresh market. ● The 1997-1998 average yield of limes in Florida was 14,344 pounds per acre. At a price of $5.02 per box, the Florida crop (440,000 boxes) was worth approximately $2.21 million (1). ● In 2000-2001, 1,171 acres in Florida produced 22 million pounds of 'Tahiti' lime. This is a 58 percent decrease from the previous year, when 53 million pounds were recorded (2,3). ● As of the end of 2000, there has been a 63 percent reduction in lime acreage since 1996 (bearing acreage of 3,168 acres). Except for 20 acres, all of the lime production is located in Miami-Dade County. Consequently, ninety-eight percent of 'Tahiti' lime production occurs in this county (3). ● Florida was ranked first in the United States in lime production. No other states were listed as leading lime-producers (1). ● Reductions in lime acreage have occurred due to Hurricane Andrew and citrus canker. Bearing acreage before Andrew was approximately 6,000 acres, which dropped drastically to 1,668 acres after this event (4). An estimated 290,000 lime trees (2,800 acres) have been lost to citrus canker in the 2000-2001 period (2).