Meiosis I Progression in Spermatogenesis Requires a Type of Testis-Specific 20S Core Proteasome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(TEX) Genes: a Review Focused on Spermatogenesis and Male Fertility
Bellil et al. Basic and Clinical Andrology (2021) 31:9 https://doi.org/10.1186/s12610-021-00127-7 REVIEW ARTICLE Open Access Human testis-expressed (TEX) genes: a review focused on spermatogenesis and male fertility Hela Bellil1, Farah Ghieh2,3, Emeline Hermel2,3, Béatrice Mandon-Pepin2,3 and François Vialard1,2,3* Abstract Spermatogenesis is a complex process regulated by a multitude of genes. The identification and characterization of male-germ-cell-specific genes is crucial to understanding the mechanisms through which the cells develop. The term “TEX gene” was coined by Wang et al. (Nat Genet. 2001; 27: 422–6) after they used cDNA suppression subtractive hybridization (SSH) to identify new transcripts that were present only in purified mouse spermatogonia. TEX (Testis expressed) orthologues have been found in other vertebrates (mammals, birds, and reptiles), invertebrates, and yeasts. To date, 69 TEX genes have been described in different species and different tissues. To evaluate the expression of each TEX/tex gene, we compiled data from 7 different RNA-Seq mRNA databases in humans, and 4 in the mouse according to the expression atlas database. Various studies have highlighted a role for many of these genes in spermatogenesis. Here, we review current knowledge on the TEX genes and their roles in spermatogenesis and fertilization in humans and, comparatively, in other species (notably the mouse). As expected, TEX genes appear to have a major role in reproduction in general and in spermatogenesis in humans but also in all mammals such as the mouse. Most of them are expressed specifically or predominantly in the testis. -
Snps) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction S
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/07/06/dmd.118.082164.DC1 1521-009X/46/9/1372–1381$35.00 https://doi.org/10.1124/dmd.118.082164 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1372–1381, September 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Single Nucleotide Polymorphisms (SNPs) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction s Duan Liu, Sisi Qin, Balmiki Ray,1 Krishna R. Kalari, Liewei Wang, and Richard M. Weinshilboum Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (D.L., S.Q., B.R., L.W., R.M.W.) and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.K.), Mayo Clinic, Rochester, Minnesota Received April 22, 2018; accepted June 28, 2018 ABSTRACT Downloaded from CYP1A1 expression can be upregulated by the ligand-activated aryl fashion. LCLs with the AA genotype displayed significantly higher hydrocarbon receptor (AHR). Based on prior observations with AHR-XRE binding and CYP1A1 mRNA expression after 3MC estrogen receptors and estrogen response elements, we tested treatment than did those with the GG genotype. Electrophoretic the hypothesis that single-nucleotide polymorphisms (SNPs) map- mobility shift assay (EMSA) showed that oligonucleotides with the ping hundreds of base pairs (bp) from xenobiotic response elements AA genotype displayed higher LCL nuclear extract binding after (XREs) might influence AHR binding and subsequent gene expres- 3MC treatment than did those with the GG genotype, and mass dmd.aspetjournals.org sion. -
Transcription Factor ZFP38 Is Essential for Meiosis Prophase I in Male Mice
REPRODUCTIONRESEARCH Transcription factor ZFP38 is essential for meiosis prophase I in male mice Zechen Yan1, Dandan Fan2, Qingjun Meng1, Jinjian Yang1, Wei Zhao1, Fei Guo1, Dongjian Song1, Ruiming Guo1, Ke Sun1 and Jiaxiang Wang1 1Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China and 2Henan Academy of Medical and Pharmaceutical Science, Zhengzhou, Henan, China Correspondence should be addressed to J Wang; Email: [email protected] Abstract The production of haploid gametes by meiosis is a cornerstone of sexual reproduction and maintenance of genome integrity. Zfp38 mRNA is expressed in spermatocytes, indicating that transcription factor ZFP38 has the potential to regulate transcription during meiosis. In this study, we generated Zfp38 conditional knockout mice (Zfp38flox/flox, Stra8-Cre, hereafter called Zfp38 cKO) and found that spermatogenesis did not progress beyond meiosis prophase I in Zfp38 cKO mice. Using a chromosomal spread technique, we observed that Zfp38 cKO spermatocytes exhibited a failure in chromosomal synapsis observed by SYCP1/SYCP3 double staining. Progression of DNA double-strand breaks (DSB) repair is disrupted in Zfp38 cKO spermatocytes, as revealed by γ-H2AX, RAD51 and MLH1 staining. Furthermore, the mRNA and protein levels of DSB repair enzymes and factors that guide their loading onto sites of DSBs, such as RAD51, DMC1, RAD51, TEX15 and PALB2, were significantly reduced in Zfp38 cKO spermatocytes. Taken together, our data suggest that ZFP38 is critical for the chromosomal synapsis and DSB repairs partially via its regulation of DSB repair- associated protein expression during meiotic progression in mouse. Reproduction (2016) 152 431–437 Introduction recombinases (Pittman et al. -
Table 1. Swine Proteins Identified As Differentially Expressed at 24Dpi in OURT 88/3 Infected Animals
Table 1. swine proteins identified as differentially expressed at 24dpi in OURT 88/3 infected animals. Gene name Protein ID Protein Name -Log p-value control vs A_24DPI Difference control Vs A_24DPI F8 K7GL28 Coagulation factor VIII 2.123919902 5.42533493 PPBP F1RUL6 C-X-C motif chemokine 3.219079808 4.493174871 SDPR I3LDR9 Caveolae associated protein 2 2.191007299 4.085711161 IGHG L8B0X5 IgG heavy chain 2.084611488 -4.282530149 LOC100517145 F1S3H9 Complement C3 (LOC100517145) 3.885740476 -4.364484406 GOLM1 F1S4I1 Golgi membrane protein 1 1.746130664 -4.767168681 FCN2 I3L5W3 Ficolin-2 2.937884686 -6.029483795 Table 2. swine proteins identified as differentially expressed at 7dpi in Benin ΔMGF infected animals. Gene name Protein ID Protein Name -Log p-value control vs B_7DPI Difference control Vs B_7DPI A0A075B7I5 Ig-like domain-containing protein 1.765578164 -3.480728149 ATP5A1 F1RPS8_PIG ATP synthase subunit alpha 2.270386995 3.270935059 LOC100627396 F1RX35_PIG Fibrinogen C-terminal domain-containing protein 2.211242648 3.967363358 LOC100514666;LOC102158263 F1RX36_PIG Fibrinogen alpha chain 2.337934993 3.758180618 FGB F1RX37_PIG Fibrinogen beta chain 2.411948004 4.03753376 PSMA8 F1SBA5_PIG Proteasome subunit alpha type 1.473601007 -3.815182686 ACAN F1SKR0_PIG Aggrecan core protein 1.974489764 -3.726634026 TFG F1SL01_PIG PB1 domain-containing protein 1.809215274 -3.131304741 LOC100154408 F1SSL6_PIG Proteasome subunit alpha type 1.701949053 -3.944885254 PSMA4 F2Z528_PIG Proteasome subunit alpha type 2.045768185 -4.502977371 PSMA5 F2Z5K2_PIG -
Gene Set Size Count Z-Score P-Value Q-Value List of Genes
Supplementary Data 2-1 Results from competitive pathway enrichment analysis based on genome-wide summary-level data of hsGWAS. Gene Set Size Count z-score p-value q-value List of Genes KEGG_ALLOGRAFT_ 38 36 12.6476 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- REJECTION DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA- DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IFNG(1.74523); PRF1(1.46483); FASLG(1.10083); FAS(0.923795); HLA- DRB3(0.760622); CD80(0.436654); IL4(0.324564); CD40(0.271072); HLA- DRB4(0.0708609); IL12A(0.0685942); IL5(0.0659333); CD86(0.049911); CD28(- 0.16103); IL10(-0.165903); IL12B(-0.245281); GZMB(-0.268581); KEGG_GRAFT_VERSUS_HOS 42 37 12.6129 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- T_DISEASE DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA- DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IL6(1.94139); IFNG(1.74523); PRF1(1.46483); FASLG(1.10083); FAS(0.923795); HLA-DRB3(0.760622); CD80(0.436654); IL1A(0.402186); KLRD1(0.29064); KIR3DL1(0.157683); HLA-DRB4(0.0708609); CD86(0.049911); CD28(-0.16103); GZMB(-0.268581); IL1B(-0.388308); KLRC1(-0.466394); KIR3DL2(-0.786806); KEGG_TYPE_I_DIABETES_ME -
Meiotic Gene Expression Initiates During Larval Development in the Sea Urchin $Watermark-Text $Watermark-Text $Watermark-Text Mamiko Yajima1, Elena Suglia, Eric A
NIH Public Access Author Manuscript Dev Dyn. Author manuscript; available in PMC 2014 February 01. Published in final edited form as: Dev Dyn. 2013 February ; 242(2): 155–163. doi:10.1002/dvdy.23904. Meiotic gene expression initiates during larval development in the sea urchin $watermark-text $watermark-text $watermark-text Mamiko Yajima1, Elena Suglia, Eric A. Gustafson, and Gary M. Wessel2 MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA Abstract Background—Meiosis is a unique mechanism in gamete production and a fundamental process shared by all sexually reproducing eukaryotes. Meiosis requires several specialized and highly conserved genes whose expression can also identify the germ cells undergoing gametogenic differentiation. Sea urchins are echinoderms which form a phylogenetic sister group of chordates. Sea urchin embryos undergo a feeding, planktonic larval phase in which they construct an adult rudiment prior to metamorphosis. Although a series of conserved meiosis genes (e.g. dmc1, msh5, rad21, rad51, and sycp1) are expressed in sea urchin oocytes, we sought to determine when in development meiosis would first be initiated. Result—We surveyed the expression of several meiotic genes and their corresponding proteins in the sea urchin Strongylocentrotus purpuratus. Surprisingly, meiotic genes are highly expressed not only in ovaries but beginning in larvae. Both RNA and protein localizations strongly suggest that meiotic gene expression initiates in tissues that will eventually give rise to the adult rudiment of the late larva. Conclusions—These results demonstrate that broad expression of the molecules associated with meiotic differentiation initiates prior to metamorphosis and may have additional functions in these cells, or mechanisms repressing their function until later in development, when gametogenesis begins. -
Crystal Structure of Hop2-Mnd1 and Mechanistic Insights Into Its Role in Meiotic Recombination
This is a repository copy of Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/152403/ Version: Published Version Article: Kang, H.-A., Shin, H.-C., Kalantzi, A.-S. et al. (5 more authors) (2015) Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Research, 43 (7). pp. 3841-3856. ISSN 0305-1048 https://doi.org/10.1093/nar/gkv172 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Published online 3 March 2015 Nucleic Acids Research, 2015, Vol. 43, No. 7 3841–3856 doi: 10.1093/nar/gkv172 NAR Breakthrough Article Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination Hyun-Ah Kang1, Ho-Chul Shin1,2, Alexandra-Styliani Kalantzi3, Christopher P. Toseland4, Hyun-Min Kim1, Stephan Gruber4, Matteo Dal Peraro3 and Byung-Ha Oh1,* 1Department of Biological Sciences, -
Polyubiquitin Gene Ubb Is Required for Upregulation of Piwi Protein Level During Mouse Testis Development
www.nature.com/cddiscovery ARTICLE OPEN Polyubiquitin gene Ubb is required for upregulation of Piwi protein level during mouse testis development 1,4 2,4 2 1 1 2 ✉ Bitnara Han , Byung-Kwon✉ Jung , So-Hyun Park , Kyu Jin Song , Muhammad Ayaz Anwar , Kwon-Yul Ryu and Kwang Pyo Kim 1,3 © The Author(s) 2021 Testis development, including early embryonic gonad formation and late postnatal spermatogenesis, is essential for the reproduction of higher metazoans to generate fertile gametes, called sperm. We have previously reported that the polyubiquitin gene Ubb is required for fertility in both male and female mice. In particular, the Ubb-null male mice showed an azoospermia phenotype due to arrest of spermatogenesis at the pachytene stage. Here, we analyzed the whole testis proteome at postnatal day 20 to define the molecular mediators of the male-infertility phenotype caused by Ubb knockout. From the identified proteome, 564 proteins were significantly and differentially expressed in Ubb-knockout testes and, among these, 36 downregulated proteins were involved at different stages of spermatogenesis. We also found that levels of piRNA metabolic process-related proteins, including Piwil2 and Tdrd1, were downregulated in Ubb-null testes through functional gene ontology analysis. Further, protein–protein interaction mapping revealed that 24 testis development-related proteins, including Hsp90aa1, Eef1a1, and Pabpc1, were directly influenced by the depletion of ubiquitin. In addition, the reduced mRNA levels of these proteins were observed in Ubb-knockout testes, which closely resembled the global downregulation of piRNA-metabolic gene expression at the transcriptional and post- transcriptional levels. Together with proteomic and transcriptional analyses, our data suggest that Ubb expression is essential for the maintenance of testicular RNA-binding regulators and piRNA-metabolic proteins to complete spermatogenesis in mice. -
Hsmcm8 and Hsmcm9: Essential for Double-Strand Break Repair and Normal Ovarian Function
HsMCM8 and HsMCM9: Essential for Double-Strand Break Repair and Normal Ovarian Function by Elizabeth Paladin Jeffries Bachelor of Science, Indiana University of Pennsylvania, 2009 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts & Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH The Kenneth P. Dietrich School of Arts & Sciences This dissertation was presented by Elizabeth P. Jeffries It was defended on May 4, 2015 and approved by Xinyu Liu, Assistant Professor, Department of Chemistry Aleksandar Rajkovic, Professor and Chair, Department of Obstetrics, Gynecology and Reproductive Sciences Dissertation Co-Advisor: Seth Horne, Associate Professor, Department of Chemisry Dissertation Co-Advisor: Michael Trakselis, Adjunct Associate Professor, Department of Chemistry, University of Pittsburgh ii HsMCM8 and HsMCM9: Essential for Double-Strand Break Repair and Normal Ovarian Function Elizabeth Paladin Jeffries, PhD University of Pittsburgh, 2015 Copyright © by Elizabeth P. Jeffries 2015 iii HsMCM8 AND HsMCM9: ESSENTIAL FOR DNA DOUBLE-STRAND BREAK REPAIR AND NORMAL OVARIAN FUNCTION Elizabeth Jeffries, PhD University of Pittsburgh, 2015 The minichromosome maintenance (MCM) family of proteins is conserved from archaea to humans, and its members have roles in initiating DNA replication. MCM8 and MCM9 are minimally characterized members of the eukaryotic MCM family that associate with one another and both contain conserved ATP binding and hydrolysis motifs. The MCM8-9 complex participates in repair of DNA double-strand breaks by homologous recombination, and MCM8 is implicated in meiotic recombination. We identified a novel alternatively spliced isoform of HsMCM9 that results in a medium length protein product (MCM9M) that eliminates a C-terminal extension of the fully spliced product (MCM9L). -
BRCA2 Regulates DMC1-Mediated Recombination Through the BRC Repeats
BRCA2 regulates DMC1-mediated recombination through the BRC repeats Juan S. Martineza,b,1, Catharina von Nicolaia,b,1, Taeho Kimc, Åsa Ehléna,b, Alexander V. Mazind, Stephen C. Kowalczykowskic,2, and Aura Carreiraa,b,2 aGenotoxic Stress and Cancer Unit, Institut Curie, Research Center, Orsay 91405, France; bCNRS UMR3348, Centre Universitaire, Orsay 91405, France; cDepartments of Microbiology and Molecular Genetics and of Molecular and Cellular Biology, University of California, Davis, CA 95616-8665; and dDepartment of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192 Contributed by Stephen C. Kowalczykowski, February 2, 2016 (sent for review October 5, 2014; reviewed by Douglas K. Bishop and William K. Holloman) In somatic cells, BRCA2 is needed for RAD51-mediated homologous Importantly, loss of Brca2 in plants causes chromosomal aber- recombination. The meiosis-specific DNA strand exchange protein, rations during meiosis (14). In humans, GST-pull down assays DMC1, promotes the formation of DNA strand invasion products using peptide fragments of BRCA2 mapped a unique DMC1 (joint molecules) between homologous molecules in a fashion similar interacting site to residues 2386–2411 (8). However, in mouse, mu- to RAD51. BRCA2 interacts directly with both human RAD51 and tation of a key residue (Phe-2406) within this site, which had been DMC1; in the case of RAD51, this interaction results in stimulation of shown to disrupt the interaction of BRCA2 with DMC1 by peptide RAD51-promoted DNA strand exchange. However, for DMC1, little is array analysis, had no effect in meiosis (15), suggesting that another known regarding the basis and functional consequences of its site or sites in BRCA2 provide the functions needed during meiosis interaction with BRCA2. -
Crystal Structure of Human DNA Recombinase, Dmc1
Crystal Structure of Human DNA Recombinase, Dmc1 Meiosis is a cell division process specifically homologous recombination is important. We have occurring in germ cells (testis and ovary) of focused on the protein that is responsible for the eukaryotes. During the cell division, homologous homologous recombination in germ cells, namely chromosomes pair and parts or all of the genes are Dmc1, and have succeeded in crystallizing the full- shuffled between chromosomes, a process called length human protein [2]. The crystal was used to homologous recombination (Fig. 1) [1]. Eukaryotes determine the three-dimensional structure of Dmc1 at obtain genetic variation by this method. Homologous atomic resolution. Based on this structure, we have recombination is also essential for the repair of DNA studied the homologous recombination promoted by damage, thus, for the cell to function properly, Dmc1. The human Dmc1 protein, consisting of 340 amino acids, binds both single-stranded DNA and double- stranded DNA, and promotes the homologous-pairing reaction, a key step of homologous recombination. We overexpressed the Dmc1 protein in Escherichia Double-strand bresk coli and purified the Dmc1 protein using several chromatographic techniques. A single crystal (100 µm × 600 µm × 600 µm) of Dmc1 was obtained, and the Homologous pairing resction crystal structure of Dmc1 was successfully determined using data collected at the synchrotron radiation of the RIKEN Structural Biology II beamline BL44B2. Ligation, formation of a The human Dmc1 protein is a homolog of the E. double-Holliday junction coli RecA protein. Studies have shown that the bacterial RecA protein forms a helical filament Crossover products structure and promotes homologous pairing. -
DMC1 Protein-Protein Interactions Are Directly Linked to Meiosis Homeostasis and Fertility
Open Access Austin Cell Biology Research Article DMC1 Protein-Protein Interactions are Directly Linked to Meiosis Homeostasis and Fertility Silva KSF* Biological Sciences Institute, Federal University of Goiás, Abstract Brazil Infertility is a disorder of the reproductive system. Couples are infertile *Corresponding author: Kleber Santiago Freitas e when they are unable to conceive children by a functional pregnancy after one Silva, Biological Sciences Institute, Federal University of year of regular and unprotected sexual intercourse. About 15% of couples in Goiás, Brazil the reproductive age around the world cannot conceive children and around 30% of all cases of infertility are idiopathic, with unknown underlying causes. Received: September 10, 2018; Accepted: October 23, Protein-protein interactions have not yet been extensively explored regarding 2018; Published: October 30, 2018 those underlying causes of infertility and one can assume that PPIs could be directly related to some of the idiopathic cases of infertility. Meiosis is a cell division process governed by a multitude of proteins and multiprotein complexes that regulate DNA double strand breaks, homologous recombination, synapsis [1], mismatch repair, chromosome maintenance and synaptonemal complex. PPI studies have been used in a variety of ways in other to shed some light on unknown molecular biologic processes that take place in the microenvironment of cells and may lead to diseases. PPI approaches have been used to identify the dynamic of biological systems and diseases onset, progression, diagnosis and treatment. Here, we present bioinformatics and in silico analysis of DMC1 and interacting protein partners that play important roles in meiosis homeostasis and consequently in human fertility.