1 August26,2010 0:6 WSPC-ProceedingsTrimSize:9inx6in tasi09˙ws˙v2 INTRODUCTION TO COLLIDER PHYSICS MAXIM PERELSTEIN∗ Newman Laboratory of Elementary Particle Physics Cornell University, Ithaca, NY 14853, USA E-mail:
[email protected] This is a set of four lectures presented at the Theoretical Advanced Study Institute (TASI-09) in June 2009. The goal of the lectures is to introduce students to some of the basic ideas and tools required for theoretical analysis of collider data. Several examples of Standard Model processes at electron-positron and hadron colliders are considered to illustrate these ideas. In addition, a general strategy for formulating searches for physics beyond the Standard Model is outlined. The lectures conclude with a brief survey of recent, ongoing and future searches for the Higgs boson and supersymmetric particles. Keywords: Elementary Particle Physics; Collider Physics 1. Introduction Our knowledge of the laws of physics in the sub-nuclear domain (at distance scales of about 10−13 cm and smaller) is for the most part derived from analyzing the outcomes of high-energy collisions of elementary par- ticles. While the size and sophistication of each component of high-energy collision experiments have steadily grown, the basic experimental setup has remained unchanged since late 1960’s. First, a particle accelerator uses a carefully designed combination of electric and magnetic fields to produce narrowly focused beams of energetic particles (typically electrons, protons, and their antiparticles). Then, two beams collide head-on, usually with equal and opposite momenta so that the center-of-mass frame of the colliding system coincides with the laboratory frame.a The region where collisions occur (the “interaction point”) is surrounded by a set of particle detectors, which attempt to identify the particles coming out of the collision, and measure their energies and momenta.